1
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
2
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
4
|
Rybakin V, Westernberg L, Fu G, Kim HO, Ampudia J, Sauer K, Gascoigne NRJ. Allelic exclusion of TCR α-chains upon severe restriction of Vα repertoire. PLoS One 2014; 9:e114320. [PMID: 25500569 PMCID: PMC4264757 DOI: 10.1371/journal.pone.0114320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Development of thymocytes through the positive selection checkpoint requires the rearrangement and expression of a suitable T cell receptor (TCR) α-chain that can pair with the already-expressed β-chain to make a TCR that is selectable. That is, it must have sufficient affinity for self MHC-peptide to induce the signals required for differentiation, but not too strong so as to induce cell death. Because both alleles of the α-chain continue to rearrange until a positively-selectable heterodimer is formed, thymocytes and T cells can in principle express dual α-chains. However, cell-surface expression of two TCRs is comparatively rare in mature T cells because of post-transcriptional regulatory mechanisms termed “phenotypic allelic exclusion”. We produced mice transgenic for a rearranged β-chain and for two unrearranged α-chains on a genetic background where endogenous α-chains could not be rearranged. Both Vα3.2 and Vα2 containing α-chains were efficiently positively selected, to the extent that a population of dual α-chain-bearing cells was not distinguishable from single α-chain-expressors. Surprisingly, Vα3.2-expressing cells were much more frequent than the Vα2 transgene-expressing cells, even though this Vα3.2-Vβ5 combination can reconstitute a known selectable TCR. In accord with previous work on the Vα3 repertoire, T cells bearing Vα3.2 expressed from the rearranged minilocus were predominantly selected into the CD8+ T cell subpopulation. Because of the dominance of Vα3.2 expression over Vα2 expressed from the miniloci, the peripheral T cell population was predominantly CD8+ cells.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Luise Westernberg
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Hee-Ok Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Jeanette Ampudia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Nicholas R. J. Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- * E-mail:
| |
Collapse
|
5
|
Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions. Proc Natl Acad Sci U S A 2014; 111:5652-7. [PMID: 24706795 DOI: 10.1073/pnas.1321803111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.
Collapse
|