1
|
Zheng J, Dong C, Xiong S. Mycobacterial Rv1804c binds to the PEST domain of IκBα and activates macrophage-mediated proinflammatory responses. iScience 2024; 27:109101. [PMID: 38384838 PMCID: PMC10879709 DOI: 10.1016/j.isci.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Recognition of the components of Mycobacterium tuberculosis (Mtb) by macrophages is vital for initiating a cascade of host immune responses. However, the recognition of Mtb-secretory proteins by the receptor-independent pathways of the host remains unclear. Rv1804c is a highly conserved secretory protein in Mtb. However, its exact function and underlying mechanism in Mtb infection remain poorly understood. In the present study, we observed that Rv1804c activates macrophage-mediated proinflammatory responses in an IKKα-independent manner. Furthermore, we noted that Rv1804c inhibits mycobacterial survival. By elucidating the underlying mechanisms, we observed that Rv1804c activates IκBα by directly interacting with its PEST domain. Moreover, Rv1804c was enriched in attenuated but not in virulent mycobacteria and associated with the disease process of tuberculosis. Our findings provide an alternative pathway via which a mycobacterial secretory protein activates macrophage-mediated proinflammatory responses. Our study findings may shed light on the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Consonni F, Chiti N, Ricci S, Venturini E, Canessa C, Bianchi L, Lippi F, Montagnani C, Giovannini M, Chiappini E, Galli L, Azzari C, Lodi L. Unbalanced serum immunoglobulins in clinical subtypes of pediatric tuberculosis disease. Front Pediatr 2022; 10:908963. [PMID: 36016881 PMCID: PMC9395963 DOI: 10.3389/fped.2022.908963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Immune response to tuberculosis (TB) has been extensively studied in the past decades and classically involves cellular immunity. However, evidence suggests that humoral immunity may play a relevant role. Past studies regarding serum immunoglobulin (Ig) levels in TB are dated and only involve adult subjects. In this study, we retrospectively studied a cohort of 256 children with TB disease and analyzed 111 patients screened for total serum Ig at diagnosis. According to the severity and extent of organ involvement, subjects were divided into four groups, namely, uncomplicated pulmonary TB (UCPTB, 56.3% of patients), complicated pulmonary TB (CPTB, 22.5%), lymph node extrapulmonary TB (LN-EPTB, 7.2%), and extra-nodal extrapulmonary TB (EN-EPTB, 13.5%). Serum IgG and IgA levels were significantly higher in more severe and extended TB disease. Median IgG levels progressively increased from uncomplicated to complicated pulmonary and nodal forms, reaching their highest values in diffuse extra-pulmonary TB. In parallel, UCPTB showed significantly lower frequencies of patients presenting a substantial increase in IgG levels when compared with the other three groups. No relevant differences in IgM levels were detected. Ig screening at follow-up showed a significant reduction in IgG and IgA levels. Finally, we unveiled three cases of selective IgA and one case of selective IgM deficiencies (SIgMD), the latter with a severe clinical course. Serum IgG and IgA may be a useful clinical tool to assess the severity and monitor the treatment response in pediatric TB disease. Moreover, immunological workup in children with TB disease may unmask primary defects of humoral immunity.
Collapse
Affiliation(s)
- Filippo Consonni
- Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Nicolò Chiti
- Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Clementina Canessa
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Leila Bianchi
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Francesca Lippi
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Mattia Giovannini
- Allergology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, University of Florence, Florence, Italy.,Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy.,Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
3
|
Qiang L, Zhang Y, Liu CH. Mycobacterium tuberculosis effector proteins: functional multiplicity and regulatory diversity. Cell Mol Immunol 2021; 18:1343-1344. [PMID: 33772098 DOI: 10.1038/s41423-021-00676-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lihua Qiang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cui Hua Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhou YY, Wang C, Yuan J, Yin RL, Chen X, Li R, Zhang XL, Wang J, Huang C, Yin RH. Comparative Transcriptomic Analyses of Haemophilus parasuis Reveal Differently Expressed Genes among Strains with Different Virulence Degrees. Curr Microbiol 2021; 78:1566-1576. [PMID: 33674900 DOI: 10.1007/s00284-021-02417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/10/2021] [Indexed: 11/26/2022]
Abstract
Haemophilus parasuis is commonly found in the upper respiratory tract of the pigs. Some isolates of H. parasuis can lead to both pneumonia and Glässer's disease of pigs with severe clinical symptoms. The virulence-associated genes for the various degrees of virulence observed in H. parasuis remains poorly understood. In the present study, we identified the differentially expressed genes between YK1603 (non-virulent strain) and XM1602 (moderately virulent strain) or CY1201 (highly virulent strain) of H. parasuis using Illumina sequencing technique. In comparison to YK1603, a total of 195 genes were significantly changed in CY1201, of which 71 genes were up-regulated and 124 genes were down-regulated, whereas 705 genes were significantly changed in XM1602, of which 415 genes were up-regulated and 290 genes were down-regulated. The enriched analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways on the differentially expressed genes showed that both enriched main GO terms and KEGG pathways appear to be different between the two kinds of comparision: CY1201 versus YK1603, and XM1602 versus YK1603. Based on real-time PCR technique, on the whole, it was confirmed that the expression of ten genes: lpxL, tbpB, kdtA, waaQ, oapA, napA, ptsH, mmsA, lpxM, and lpxB were agreement with the findings in Illumina sequencing analysis. These identified genes might participate in the regulation of a wide range of biological process involved in virulence of H. parasuis, such as phosphotransferase system and ABC transporters. Our results from this study provide a new way to gain insight into the virulent mechanisms of H. parasuis.
Collapse
Affiliation(s)
- Yuan Y Zhou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Agricultural Technical College, Yingkou, 115009, China
| | - Jing Yuan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rong L Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun, 130062, China
| | - Xin Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue L Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chen Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rong H Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Mycobacterium tuberculosis MmsA (Rv0753c) Interacts with STING and Blunts the Type I Interferon Response. mBio 2020; 11:mBio.03254-19. [PMID: 33262262 PMCID: PMC7733952 DOI: 10.1128/mbio.03254-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is unclear how the type I IFN response is regulated by mycobacterial determinants. Here, we characterized the previously unreported role of M. tuberculosis MmsA in immunological regulation of type I IFN response by targeting the central adaptor STING in the DNA sensing pathway. We identified STING-interacting MmsA by coimmunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis and showed MmsA interacting with STING and autophagy receptor p62 via its N terminus and C terminus, respectively. We also showed that MmsA downregulated type I IFN by promoting p62-mediated STING degradation. Moreover, the MmsA mutant R138W is potentially associated with the virulence of M. tuberculosis clinical strains owing to the modulation of STING protein. Our results provide novel insights into the regulatory mechanism of type I IFN response manipulated by mycobacterial MmsA and the additional cross talk between autophagy and STING in M. tuberculosis infection, wherein a protein from microbial pathogens induces autophagic degradation of host innate immune molecules. Type I interferon (IFN) plays an important role in Mycobacterium tuberculosis persistence and disease pathogenesis. M. tuberculosis has evolved a number of mechanisms to evade host immune surveillance. However, it is unclear how the type I IFN response is tightly regulated by the M. tuberculosis determinants. Stimulator of interferon genes (STING) is an essential adaptor for type I IFN production triggered by M. tuberculosis genomic DNA or cyclic dinucleotides upon infection. To investigate how the type I IFN response is regulated by M. tuberculosis determinants, immunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis was performed to screen proteins interacting with STING in the context of M. tuberculosis infection. Among the many predicted candidates interacting with STING, the M. tuberculosis coding protein Rv0753c (MmsA) was identified. We confirmed that MmsA binds and colocalizes with STING, and the N-terminal regions of MmsA (amino acids [aa] 1 to 251) and STING (aa 1 TO 190) are responsible for MmsA-STING interaction. Type I IFN production was impaired with exogenous expression of MmsA in RAW264.7 cells. MmsA inhibited the STING-TBK1-IRF3 pathway, as evidenced by reduced STING levelS and subsequent IRF3 activation. Furthermore, MmsA facilitated p62-mediated STING autophagic degradation by binding p62 with its C terminus (aa 252 to 455), which may account for the negative regulation of M. tuberculosis MmsA in STING-mediated type I IFN production. Additionally, the M. tuberculosismmsA R138W mutation, detected in a hypervirulent clinical isolate, enhanced the degradation of STING, implying the important relevance of MmsA in disease outcome. Together, we report a novel mechanism where M. tuberculosis MmsA serves as an antagonist of type I IFN response by targeting STING with p62-mediated autophagic degradation.
Collapse
|
6
|
Xue L, Shuyan T, Xiaoli L, Zilong L, Qiuling F, Lining W, Yanqiu L, Li Y. Glomerular Proteomic Profiles in the NZB/W F1 Hybrid Mouse Model of Lupus Nephritis. Med Sci Monit 2019; 25:2122-2131. [PMID: 30900683 PMCID: PMC6698093 DOI: 10.12659/msm.914365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Lupus nephritis is one of the most serious complications of systemic lupus erythematosus (SLE) and is associated with patient mortality. This study aimed to investigate the proteomic profiles of the glomerulus in the NZB/W F1 hybrid mouse model of mild and severe lupus nephritis using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Material/Methods Female NZB/WF1 mice (n=60) at 28 weeks of age were divided into the mild proteinuria group (+1), the moderate proteinuria group (+2), and the severe proteinuria group (+3) using paper strip urine testing, and then later divided into a mild (≤1+) and severe (≥3+) proteinuria group to allow comparison of upregulation and down-regulation of proteins between the two groups. Renal glomeruli were isolated following renal perfusion with magnetic beads. Protein expression was determined by Western blot, immunohistochemistry, 2D-DIGE, and MALDI-TOF-MS. Results A total of 56 differentially expressed proteins were identified from 133 protein spots, of which 18 were upregulated and 23 were down-regulated between groups 1 and 2. Expression of the proteins Ras-related GTP-binding protein B (RRAGB), serine/threonine-protein kinase 1 (SMG1), angiopoietin 2 (ANGP2), methylmalonate semialdehyde (MMSA), and ATP beta chain (ATPB) were identified by Western blot and SMG1, ANGP2, and MMSA were identified by immunohistochemistry. Conclusions In a mouse model of lupus nephritis, expression of SMG1, MMSA, and ATPB were down-regulated, and RRAGB and ANGP2 were upregulated.
Collapse
Affiliation(s)
- Liu Xue
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tian Shuyan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Xiaoli
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Zilong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fan Qiuling
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wang Lining
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Yanqiu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yao Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
7
|
Yao S, Xu M, Li Y, Zhou L, Liao H, Zhang H, Zhang C. Staphylococcal enterotoxin C2 stimulated the maturation of bone marrow derived dendritic cells via TLR-NFκB signaling pathway. Exp Cell Res 2018; 370:237-244. [DOI: 10.1016/j.yexcr.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022]
|
8
|
Kim WS, Shin MK, Shin SJ. MAP1981c, a Putative Nucleic Acid-Binding Protein, Produced by Mycobacterium avium subsp. paratuberculosis, Induces Maturation of Dendritic Cells and Th1-Polarization. Front Cell Infect Microbiol 2018; 8:206. [PMID: 29977867 PMCID: PMC6021526 DOI: 10.3389/fcimb.2018.00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative pathogen of chronic granulomatous enteropathy (Johne's disease) in animals, and has been focused on its association with various autoimmune diseases in humans, including Crohn's disease. The discovery of novel mycobacterial antigens and exploring their role in host immunity can contribute to the advancement of effective defense strategies including vaccines and diagnostic tools. In a preliminary study, we identified cellular extract proteins of MAP that strongly react with the blood of patients with Crohn's disease. In particular, MAP1981c, a putative nucleic acid-binding protein, showed high expression levels and strong reactivity to IgG and IgM in the sera of patients. Here, we investigated the immunological features of MAP1981c and focused on its interaction with dendritic cells (DCs), confirming its immunomodulatory ability. MAP1981c was shown to recognize Toll-like receptor (TLR) 4, and induce DC maturation and activation by increasing the expression of co-stimulatory (CD80 and CD86) and MHC class I/II molecules and the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in DCs. This DC activation by MAP1981c was mediated by downstream signaling of TLR4 via MyD88- and TRIF-, MAP kinase-, and NF-κB-dependent signaling pathways. In addition, MAP1981c-treated DCs activated naïve T cells and induced the differentiation of CD4+ and CD8+ T cells to express T-bet, IFN-γ, and/or IL-2, but not GATA-3 and IL-4, thus indicating that MAP1981c contributes to Th1-type immune responses both in vitro and in vivo. Taken together, these results suggest that MAP1981c is a novel immunocompetent antigen that induces DC maturation and a Th1-biased response upon DC activation, suggesting that MAP1981c can be an effective vaccine and diagnostic target.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Kim WS, Jung ID, Kim JS, Kim HM, Kwon KW, Park YM, Shin SJ. Mycobacterium tuberculosis GrpE, A Heat-Shock Stress Responsive Chaperone, Promotes Th1-Biased T Cell Immune Response via TLR4-Mediated Activation of Dendritic Cells. Front Cell Infect Microbiol 2018; 8:95. [PMID: 29637049 PMCID: PMC5881000 DOI: 10.3389/fcimb.2018.00095] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is an extremely successful pathogen with multifactorial ability to control the host immune response. Insights into the Mtb factors modulating host response are required for the discovery of novel vaccine antigen targets as well as a better understanding of dynamic interactions between the bacterial factors and host cells. Here, we exploited the functional role of Mtb GrpE, a cofactor of heat-shock protein 70 (HSP70), in promoting naïve CD4+/CD8+T cell differentiation toward Th1-type T-cell immunity through interaction with dendritic cells (DCs). GrpE functionally induced DC maturation by up-regulating the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and production of several pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs. These effects of GrpE in DC activation were initiated upon binding to Toll-like receptor 4 (TLR4) followed by activation of downstream MyD88-, TRIF-, MAPK-, and NF-κB-dependent signaling pathways. GrpE-activated DCs displayed an excellent capacity to effectively polarize naïve CD4+ and CD8+ T cells toward Th1-type T-cell immunity with the dose-dependent secretion of IFN-γ and IL-2 together with increased levels of CXCR3 expression. Notably, GrpE-stimulated DCs induced the proliferation of GrpE-specific Th1-type effector/memory CD4+/CD8+CD44highCD62Llow T cells from the spleen of Mtb-infected mice in a TLR4-dependent manner. Collectively, these results demonstrate that GrpE is a novel immune activator that interacts with DCs, in particular, via TLR4, to generate Th1-biased memory T cells in an antigen-specific manner. GrpE may contribute to the enhanced understanding of host-pathogen interactions as well as providing a rational basis for the discovery of new potential targets to develop an effective tuberculosis vaccine.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - In Duk Jung
- Lab of Dendritic Cell Differentiation and Regulation, Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeong-Min Park
- Lab of Dendritic Cell Differentiation and Regulation, Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Pathakumari B, Devasundaram S, Maddineni P, Raja A. Rv2204c, Rv0753c and Rv0009 antigens specific T cell responses in latent and active TB – a flow cytometry-based analysis. Int J Med Microbiol 2018; 308:297-305. [DOI: 10.1016/j.ijmm.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
|
11
|
Kim WS, Kim JS, Shin MK, Shin SJ. A novel Th1-type T-cell immunity-biasing effect of malate dehydrogenase derived from Mycobacterium avium subspecies paratuberculosis via the activation of dendritic cells. Cytokine 2018; 104:14-22. [PMID: 29414321 DOI: 10.1016/j.cyto.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/30/2017] [Accepted: 01/25/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative pathogen of Johne's disease in ruminants, characterized by chronic granulomatous enteritis; it also has zoonotic potential and is associated with Crohn's disease in humans. A better understanding of the mycobacterial antigens and their roles in the host immune response may facilitate the rational design of control strategies, including the development of effective vaccines and diagnostic tools. However, the functional roles of a large proportion of MAP antigens involved in modulating the host immune response remain unknown. In this study, an immunological role of MAP malate dehydrogenase (MDH, MAP2541c), an antigen that is upregulated in stress culture conditions, such as nutrient starvation and hypoxia, in polarizing naïve CD4+/CD8+ T cells toward Th1-biased T-cell immunity via the activation of dendritic cells (DCs) was identified. DCs treated with MAP MDH displayed characteristics of the activated and mature immune status, with augmented expression of cell surface molecules and pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-12p70, but not IL-10, along with a dose-dependent decrease in the antigen uptake capacity. A mechanistic investigation revealed that the observed DC maturation is mediated by the activation of JNK, ERK, and p38 MAP kinases, and the NF-κB signaling pathway. Notably, DCs activated by MAP MDH treatment promoted naïve CD4+/CD8+ T cell proliferation; in particular, they effectively polarized naïve CD4+ T cells to secrete IFN-γ and IL-2 and activate T-bet, but, unlike the LPS control, did not influence IL-5 and GATA-3. These results indicated that MAP MDH has the potential to induce the Th1 cell response via DC activation. Collectively, our data demonstrated that MAP MDH is a novel immunostimulatory antigen that drives Th1-biased T cell polarization via interactions with DCs, suggesting that MDP MDH has the potential to be an effective MAP vaccine antigen target and diagnostic marker.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea.
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Pathakumari B, Devasundaram S, Raja A. Altered expression of antigen-specific memory and regulatory T-cell subsets differentiate latent and active tuberculosis. Immunology 2017; 153:325-336. [PMID: 28881482 DOI: 10.1111/imm.12833] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 01/20/2023] Open
Abstract
Although one-third of the world population is infected with Mycobacterium tuberculosis, only 5-10% of the infected individuals will develop active tuberculosis (TB) disease and the rest will remain infected with no symptoms, known as latent TB infection (LTBI). Identifying biomarkers that differentiate latent and active TB disease enables effective TB control, as early detection, treatment of active TB and preventive treatment of individuals with LTBI are crucial steps involved in TB control. Here, we have evaluated the frequency of antigen-specific memory and regulatory T (Treg) cells in 15 healthy household contacts (HHC) and 15 pulmonary TB patients (PTB) to identify biomarkers for differential diagnosis of LTBI and active TB. Among all the antigens tested in the present study, early secretory antigenic target-6 (ESAT-6) -specific CD4+ and CD8+ central memory (Tcm) cells showed 93% positivity in HHC and 20% positivity in PTB. The novel test antigens Rv0753c and Rv0009 both displayed 80% and 20% positivity in HHC and PTB, respectively. In contrast to Tcm cells, effector memory T (Tem) cells showed a higher response in PTB than HHC; both ESAT-6 and Rv0009 showed similar positivity of 80% in PTB and 33% in HHC. PTB patients have a higher proportion of circulating antigen-reactive Treg cells (CD4+ CD25+ FoxP3+ ) than LTBI. Rv2204c-specific Treg cells showed maximum positivity of 73% in PTB and 20% in HHC. Collectively, our data conclude that ESAT-6-specific Tcm cells and Rv2204c-specific Treg cells might be useful biomarkers to discriminate LTBI from active TB.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
13
|
Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, Tauch A, Murcia-Aranguren MI. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. INFECTION GENETICS AND EVOLUTION 2017; 54:314-323. [PMID: 28734764 DOI: 10.1016/j.meegid.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M. tuberculosis genomes. We found that the six Beijing-like isolates belong to a modern Beijing sub-lineage and share specific genomic variants: i.e. deletion in the PPE8 gene, in Rv3806c (ubiA) responsible of high ethambutol resistance and in Rv3862c (whiB6) which is involved in granuloma formation and virulence, are some of them. Moreover, each isolated has exclusively single nucleotide polymorphisms (SNPs) in genes related with cell wall processes and cell metabolism. We identified polymorphisms in genes related to drug resistance that could explain the drug-resistant phenotypes found in the six isolates from Colombia. We hypothesize that changes due to these genetic variations contribute to the success of these strains. Finally, we analyzed the IS6110 insertion sequences finding very low variance between them, suggesting that SNPs is the major cause of variability found in Beijing-like strains circulating in Colombia.
Collapse
Affiliation(s)
- Juan Germán Rodríguez-Castillo
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Camilo Pino
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis Fernando Niño
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Rozo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali 760031, Colombia
| | | | - Carlos A Parra-López
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andreas Tauch
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany
| | - Martha Isabel Murcia-Aranguren
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia.
| |
Collapse
|