1
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
2
|
Ertel MV, da Silva ABA, de Sousa DF, Dos Santos CJ, da Silva TM, da Silva-Sales MFM, de Oliveira Matos A, Sales-Campos H. Who is who within the universe of TREM-like transcripts (TREML)? Life Sci 2024; 348:122696. [PMID: 38710279 DOI: 10.1016/j.lfs.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid Cells (TREM) family of receptors plays a crucial role in the immune response across various species. Particularly, TREM-1 and TREM-2 have been extensively studied, both in terms of their applications and their expression sites and signaling pathways. However, the same is not observed for the other family members collectively known as TREM-like-transcripts (TREML). The TREML family consists of eight receptors, with TREML1-5 identified in humans and mice, TREML-6 exclusive found in mice, TREML-7 in dogs and horses, and TREML-8 in rabbits and opossums. Despite the limited data available on the TREML members, they have been implicated in different immune and non-immune activities, which have been proposed to display both pro and anti-inflammatory activities, and to influence fundamental biological processes such as coagulation, bone and neurological development. In this review, we have compiled available information regarding the already discovered members of the family and provided foundational framework for understanding the function, localization, and therapeutic potential of all TREML members. Additionally, we hope that this review may shed light on this family of receptors, whose underlying mechanisms are still awaiting elucidation, while emphasizing the need for future studies to explore their functions and potential therapeutic application.
Collapse
Affiliation(s)
- Márcia Verônica Ertel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Daniel Francisco de Sousa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Cairo José Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Tatiane Mendonça da Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Amanda de Oliveira Matos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Huang X, Zhang Z, Wang Y, Xu M, Du X, Zhang Y. Circulating miRNAs drive personalized medicine based on subgroup classification in myasthenia gravis patients. Neurol Sci 2023; 44:3877-3884. [PMID: 37402938 DOI: 10.1007/s10072-023-06933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Myasthenia gravis (MG) is a classic autoimmune neuromuscular disease with strong clinical heterogeneity. The concept of subgroup classification was proposed to guide the precise treatment of MG. Subgroups based on serum antibodies and clinical features include ocular MG, early-onset MG with AchR antibodies, late-onset MG with AchR antibodies, thymoma-associated MG, MuSK-associated MG, LRP4-associated MG, and seronegative MG. However, reliable objective biomarkers are still needed to reflect the individualized response to therapy. MicroRNAs (miRNAs) are small non-coding RNA molecules which can specifically bind to target genes and regulate gene expression at the post-transcriptional level, and then influence celluar biological processes. MiRNAs play an important role in the pathogenesis of autoimmune diseases, including MG. Several studies on circulating miRNAs in MG have been reported. However, there is rare systematic review to summarize the differences of these miRNAs in different subgroups of MG. Here, we summarize the potential role of circulating miRNAs in different subgroups of MG to promote personalized medicine.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Mingming Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Song J, Zou D, Zhao X, Chen Y, Lv F, Wang S, Sui D, Han Q, Yang C, Wang X, Liu B, Deng M, Zhang Y. Bufalin inhibits human diffuse large B-cell lymphoma tumorigenesis by inducing cell death through the Ca2+/NFATC1/cMYC pathway. Carcinogenesis 2021; 42:303-314. [PMID: 33124657 DOI: 10.1093/carcin/bgaa108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
The 5-year survival rate of diffuse large B-cell lymphoma (DLBCL) can reach 60%. However, nearly half of patients undergo relapse/refractory issues with a survival period of less than 2 years. New therapeutic approaches are therefore needed to improve chemotherapy efficacy and patient survival. Bufalin (BF), isolated from the traditional Chinese medicine Chansu, has been reported to play an anticancer role in multiple cancer cell types. However, there are few reports of the effects of BF on the growth of DLBCL. In the present study, we demonstrated that BF exerts antitumor activity in DLBCL cells, both in vitro and in vivo. Treatment of DLBCL cells with BF resulted in increased proliferation and apoptosis in a dose- and time-dependent manner. Daily intraperitoneal injection of 1.5 mg/kg BF significantly delayed DLBCL xenograft growth in NOD/SCID mice without affecting body weight. Bioinformatics analysis showed that BF may regulate NFATC1 protein and affect expression of its downstream gene, cMYC. Our results suggest that BF can attenuate NFATC1 translocation by reducing the intracellular calcium concentration; BF may also have a low synergistic effect with cyclosporin A. In conclusion, we demonstrated that BF exerts antitumor activity that is mediated at least in part by the Ca2+/NFATC1/cMYC pathway. Our findings suggest that BF can be effectively applied as a novel potential therapeutic agent for DLBCL.
Collapse
Affiliation(s)
- Jincheng Song
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China.,Department of Lymphoma, Lymphoma and Myeloma Diagnosis and Treatment Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Dan Zou
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaoxuan Zhao
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, Liaoning, PR China
| | - Yang Chen
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Song Wang
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Dan Sui
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Qiuyue Han
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ximing Wang
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Bofang Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, PR China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
5
|
Sana I, Mantione ME, Angelillo P, Muzio M. Role of NFAT in Chronic Lymphocytic Leukemia and Other B-Cell Malignancies. Front Oncol 2021; 11:651057. [PMID: 33869054 PMCID: PMC8047411 DOI: 10.3389/fonc.2021.651057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years significant progress has been made in the clinical management of chronic lymphocytic leukemia (CLL) as well as other B-cell malignancies; targeting proximal B-cell receptor signaling molecules such as Bruton Tyrosine Kinase (BTK) and Phosphoinositide 3-kinase (PI3Kδ) has emerged as a successful treatment strategy. Unfortunately, a proportion of patients are still not cured with available therapeutic options, thus efforts devoted to studying and identifying new potential druggable targets are warranted. B-cell receptor stimulation triggers a complex cascade of signaling events that eventually drives the activation of downstream transcription factors including Nuclear Factor of Activated T cells (NFAT). In this review, we summarize the literature on the expression and function of NFAT family members in CLL where NFAT is not only overexpressed but also constitutively activated; NFAT controls B-cell anergy and targeting this molecule using specific inhibitors impacts on CLL cell viability. Next, we extend our analysis on other mature B-cell lymphomas where a distinct pattern of expression and activation of NFAT is reported. We discuss the therapeutic potential of strategies aimed at targeting NFAT in B-cell malignancies not overlooking the fact that NFAT may play additional roles regulating the inflammatory microenvironment.
Collapse
Affiliation(s)
- Ilenia Sana
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| | | | - Piera Angelillo
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy.,Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Muzio
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| |
Collapse
|