1
|
Binder S, Zipfel I, Müller C, Wiedemann K, Schimmelpfennig C, Pfeifer G, Reiche K, Hauschildt S, Lehmann J, Köhl U, Horn F, Friedrich M. The noncoding RNA LINC00152 conveys contradicting effects in different glioblastoma cells. Sci Rep 2021; 11:18499. [PMID: 34531451 PMCID: PMC8446032 DOI: 10.1038/s41598-021-97533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by its high genetic heterogeneity. In search of novel putative therapeutic RNA targets we investigated the role of the oncogenic long noncoding RNA LINC00152 (CYTOR, and STAiR18) in A172 glioblastoma cells. Here, we are the first to describe, that LINC00152 unexpectedly acts in a tumor suppressive manner in this cell line. SiRNA-based knockdown of LINC00152 enhanced malignant tumor behaviors including proliferation, cell cycle entry, migration, and invasion, contradicting previous studies using U87-MG and LN229 glioblastoma cells. Furthermore, LINC00152 knockdown had no influence on survival of A172 glioblastoma cells. In a genome wide transcription analysis of A172 and U87-MG glioblastoma cells, we identified 70 LINC00152 target genes involved in locomotion, cell migration, and motility in A172 cells, whereas in U87-MG cells only 40 target genes were detected. The LINC00152-regulated genes found in A172 differed from those identified in U87-MG glioblastoma cells, none of them being regulated in both cell lines. These findings underline the strong genetic heterogeneity of glioblastoma and point to a potential, yet unknown risk addressing LINC00152 lncRNA as a prospective therapeutic target in GBM.
Collapse
Affiliation(s)
- Stefanie Binder
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ivonne Zipfel
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Karolin Wiedemann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Gabriele Pfeifer
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sunna Hauschildt
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Friedemann Horn
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Maik Friedrich
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
2
|
Subotički T, Mitrović Ajtić O, Beleslin-Čokić BB, Bjelica S, Djikić D, Diklić M, Leković D, Gotić M, Santibanez JF, Noguchi CT, Čokić VP. IL-6 stimulation of DNA replication is JAK1/2 mediated in cross-talk with hyperactivated ERK1/2 signaling. Cell Biol Int 2019; 43:192-206. [PMID: 30571852 DOI: 10.1002/cbin.11084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are developing resistance to therapy by JAK1/2 inhibitor ruxolitinib. To explore the mechanism of ruxolitinib's limited effect, we examined the JAK1/2 mediated induction of proliferation related ERK1/2 and AKT signaling by proinflammatory interleukin-6 (IL-6) in MPN granulocytes and JAK2V617F mutated human erythroleukemia (HEL) cells. We found that JAK1/2 or JAK2 inhibition prevented the IL-6 activation of STAT3 and AKT pathways in polycythemia vera and HEL cells. Further, we showed that these inhibitors also blocked the IL-6 activation of the AKT pathway in primary myelofibrosis (PMF). Only JAK1/2 inhibitor ruxolitinib largely activated ERK1/2 signaling in essential thrombocythemia and PMF (up to 4.6 fold), with a more prominent activation in JAK2V617F positive granulocytes. Regarding a cell cycle, we found that IL-6 reduction of HEL cells percentage in G2M phase was reversed by ruxolitinib (2.6 fold). Moreover, ruxolitinib potentiated apoptosis of PMF granulocytes (1.6 fold). Regarding DNA replication, we found that ruxolitinib prevented the IL-6 augmentation of MPN granulocytes frequency in the S phase of the cell cycle (up to 2.9 fold). The inflammatory stimulation induces a cross-talk between the proliferation linked pathways, where JAK1/2 inhibition is compensated by the activation of the ERK1/2 pathway during IL-6 stimulation of DNA replication.
Collapse
Affiliation(s)
- Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Olivera Mitrović Ajtić
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Bojana B Beleslin-Čokić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Genetic Laboratory, Clinical Center of Serbia, Belgrade, Serbia
| | - Sunčica Bjelica
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dragoslava Djikić
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Miloš Diklić
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Leković
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | - Mirjana Gotić
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago, 8370854, Chile
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vladan P Čokić
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Lee RJ, Wu JS, Juang RH, Wu YJ, Lin CY, Wu SY, Huang PR, Chu CH, Chin LT, Chen HM. Increasing hybridoma viability and antibody repertoire after the cell fusion by the use of human plasma as an alternative supplement. J Immunol Methods 2010; 361:89-97. [DOI: 10.1016/j.jim.2010.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
4
|
Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L, Giraud AS. Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 2007; 213:140-51. [PMID: 17724739 DOI: 10.1002/path.2218] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130(757FF) mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting.
Collapse
Affiliation(s)
- C B Jackson
- Gastrointestinal Cancer Lab, Department of Medicine, The University of Melbourne at Western Hospital, Footscray, 3011, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dussault N, Simard C, Néron S, Côté S. Human B lymphocytes and non-Hodgkin's lymphoma cells become polyploid in response to the protein kinase inhibitor SU6656. Blood Cells Mol Dis 2007; 39:130-4. [PMID: 17434768 DOI: 10.1016/j.bcmd.2007.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/28/2007] [Indexed: 12/31/2022]
Abstract
We show that prolonged exposure of non-Hodgkin's lymphoma (NHL) cell lines to low doses of the Src family protein tyrosine kinases (SFKs) inhibitor SU6656 caused proliferation abrogation as a result of the formation of cells with single multilobed nuclei and several mitotic spindle poles, features similar to polyploid megakaryocytes. The propensity of the NHL B cells tested to undergo polyploid was unrelated to the presence of p53 mutations in these cells since comparable outcomes were observed in SU6656-exposed cultures of blood B lymphocytes derived from healthy individuals. Thus, in addition to its utility for the study of megakaryocyte polyploidization, our results show that SU6656 can also induce polyploidy in cells of lymphoid origin, revealing a chemotherapeutic potential for this inhibitor to limit tumor propagation of malignant B cell lymphomas, although not without affecting normal B cells as well.
Collapse
Affiliation(s)
- Nathalie Dussault
- Département de Recherche et Développement, Héma-Québec, Québec, PQ, Canada
| | | | | | | |
Collapse
|