1
|
Lou Q, Chen F, Li B, Zhang M, Yin F, Liu X, Zhang Z, Zhang X, Fan C, Gao Y, Yang Y. Malignant growth of arsenic-transformed cells depends on activated Akt induced by reactive oxygen species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:284-298. [PMID: 34974760 DOI: 10.1080/09603123.2021.2023113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is an identified carcinogen for humans.In this study, chronic exposure of human hepatocyte L-02 to low-doses of inorganic arsenic caused cell malignant proliferation. Meanwhile, compared with normal L-02 cells, arsenic-transformed malignant cells, L-02-As displayed more ROS and significantly higher Cyclin D1 expression as well as aerobic glycolysis. Moreover, Akt activation is followed by the upregulation of Cyclin D1 and HK2 expression in L-02-As cells, since inhibition of Akt activity by Ly294002 attenuated the colony formation in soft agar and decreased the levels of Cyclin D1 and HK2. In addition, scavenging of ROS by NAC resulted in a decreased expression of phospho-Akt, HK2 and Cyclin D1, and attenuates the ability of anchorage-independent growth ofL-02-As cells, suggested that ROS mediated the Akt activation in L-02-As cells. In summary, our results demonstrated that ROS contributes to the malignant phenotype of arsenic-transformed human hepatocyte L-02-As via the activation of Akt pathway.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fuxun Chen
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Bingyang Li
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Sintiprungrat K, Singhto N, Thongboonkerd V. Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. MOLECULAR BIOSYSTEMS 2016; 12:879-89. [DOI: 10.1039/c5mb00728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This is the first study to characterize changes in the secretome of human monocytes induced by calcium oxalate crystals.
Collapse
Affiliation(s)
- Kitisak Sintiprungrat
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| | - Nilubon Singhto
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| | - Visith Thongboonkerd
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| |
Collapse
|
3
|
Ognibene M, Vanni C, Blengio F, Segalerba D, Mancini P, De Marco P, Torrisi MR, Bosco MC, Varesio L, Eva A. Identification of a novel mouse Dbl proto-oncogene splice variant: evidence that SEC14 domain is involved in GEF activity regulation. Gene 2014; 537:220-9. [PMID: 24412292 DOI: 10.1016/j.gene.2013.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The Rho guanine nucleotide exchange factor protoDbl is involved in different biochemical pathways affecting cell proliferation and migration. The N-terminal sequence of protoDbl contains negative regulatory elements that restrict the catalytic activity of the DH-PH module. Here, we report the identification of a new mouse protoDbl splice variant lacking exon 3. We found that the splice variant mRNA is expressed in the spleen and bone marrow lymphocytes, adrenal gland, gonads and brain. The protoDbl variant protein was detectable in the brain. The newly identified variant displays the disruption of the SEC14 domain, positioned on exons 2 and 3 in the protoDbl N-terminal region. We show here that an altered SEC14 sequence leads to enhanced Dbl translocation to the plasma membrane and to augmented transforming and exchange activity.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Cristina Vanni
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy
| | - Patrizia De Marco
- Laboratory of Neurosurgery, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria R Torrisi
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy; S. Andrea Hospital, 00161 Roma, Italy
| | - Maria C Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy.
| |
Collapse
|
4
|
Yang YX, Li XL, Wang L, Han SY, Zhang YR, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Sun LJ, Budhraja A, Hitron AJ, Ding SZ. Anti-apoptotic proteins and catalase-dependent apoptosis resistance in nickel chloride-transformed human lung epithelial cells. Int J Oncol 2013; 43:936-46. [PMID: 23828460 PMCID: PMC3787888 DOI: 10.3892/ijo.2013.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/29/2013] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to nickel compounds is associated with increased incidence of certain types of human cancer, including lung and nasal cancers. Despite intensive investigation, the oncogenic processes remain poorly understood. Apoptosis resistance is a key feature for tumor cells to escape physiological surveillance and acquire growth advantage over normal cells. Although NiCl2 exposure induces transformation of human lung epithelial cells, little information is available with regard to its molecular mechanisms, it is also not clear if the transformed cells are apoptosis resistant and tumorigenic. We explored the apoptosis resistance properties of nickel chloride-transformed human lung epithelial cells and the underlying mechanisms. The results showed that transformed BEAS-2B human lung epithelial cells are resistant to NiCl2-induced apoptosis. They have increased Bcl-2, Bcl-xL and catalase protein levels over the passage matched non-transformed counterparts. The mechanisms of apoptosis resistance are mitochondria-mediated and caspase-dependent. Forced overexpression of Bcl-2, Bcl-xL and catalase proteins reduced NiCl2-induced cell death; siRNA-mediated knockdown of their expression sensitized the cells to nickel-induced apoptosis, suggesting that Bcl-2, Bcl-xl and catalase protein expression plays a critical role in apoptosis resistance. Akt also participates in this process, as its overexpression increases Bcl-xL protein expression levels and attenuates NiCl2-induced apoptosis. Furthermore, transformed cells are tumorigenic in a xenograft model. Together, these results demonstrate that nickel-transformed cells are apoptosis-resistant and tumorigenic. Increased expression of Bcl-2, Bcl-xL and catalase proteins are important mechanisms contributing to transformed cell oncogenic properties.
Collapse
Affiliation(s)
- Yu-Xiu Yang
- Department of Internal Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
EGF potentiated oncogenesis requires a tissue transglutaminase-dependent signaling pathway leading to Src activation. Proc Natl Acad Sci U S A 2010; 107:1408-13. [PMID: 20080707 DOI: 10.1073/pnas.0907907107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
EGF receptor (EGFR) signaling in human cancers elicits changes in protein-expression patterns that are crucial for potentiating tumor growth. Identifying those proteins with expression regulated by the EGFR and determining how they contribute to malignancy is fundamental for the development of more effective strategies to treat cancer. Here, we show that tissue transglutaminase (tTG) is one such protein. EGF up-regulates tTG expression in human breast-cancer cells, and knock-downs of tTG or the treatment of breast cancer cells with a tTG inhibitor blocks their EGF-stimulated anchorage-independent growth. We further show that the combined actions of Ras and Cdc42, leading to the activation of PI 3-kinase and NFkappaB, provide a mechanism by which EGF can up-regulate tTG in breast-cancer cells. Moreover, overexpression of wild-type tTG, but not its transamidation-defective counterpart, fully mimics the growth advantages afforded by EGF to these cancer cells. Surprisingly, the tTG-promoted growth of breast-cancer cells is dependent on its ability to activate the Src tyrosine kinase as an outcome of a complex formed between tTG and the breast-cancer marker and intermediate filament protein keratin-19. These findings identify tTG as a key participant in an EGFR/Src-signaling pathway in breast-cancer cells and a potential target for inhibiting EGFR-promoted tumor progression.
Collapse
|
6
|
Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. Br J Nutr 2009; 102:1420-5. [DOI: 10.1017/s0007114509990766] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial infarction (MI) stimulates the release of pro-inflammatory substances that induce apoptosis in the limbic system. Pro-inflammatory cytokines are considered as the root cause of apoptosis, although the mechanism is not fully explained and/or understood at this time. In addition, depression may induce gastrointestinal perturbations that maintain the elevated levels of pro-inflammatory cytokines. It has been shown that some specific probiotic formulations may reduce gastrointestinal problems induced by stress and the pro/anti-inflammatory cytokine ratio. Therefore, we hypothesised that probiotics, when given prophylactically, may diminish the apoptosis propensity in the limbic system following a MI. Male adult Sprague–Dawley rats were given probiotics (Lactobacillus helveticus and Bifidobacterium longum in combination) or placebo in their drinking-water for four consecutive weeks. A MI was then induced in the rats by occluding the left anterior coronary artery for 40 min. Rats were killed following a 72 h reperfusion period. Infarct size was not different in the two groups. Bax/Bcl-2 (pro-apoptotic/anti-apoptotic) ratio and caspase-3 (pro-apoptotic) activity were reduced in the amygdala (lateral and medial), as well as in the dentate gyrus in the probiotics group when compared with the placebo. Akt activity (anti-apoptotic) was increased in these same three regions. No significant difference was observed in Ca1 and Ca3 for the different markers measured. In conclusion, the probiotics L. helveticus and B. longum, given in combination as preventive therapy, reduced the predisposition of apoptosis found in different cerebral regions following a MI.
Collapse
|