1
|
Wu P, Wang J, Ji X, Chai J, Chen L, Zhang T, Long X, Tu Z, Chen S, Zhang L, Wang K, Zhang L, Guo Z, Wang J. Maternal Hypermethylated Genes Contribute to Intrauterine Growth Retardation of Piglets in Rongchang Pigs. Int J Mol Sci 2024; 25:6462. [PMID: 38928167 PMCID: PMC11203632 DOI: 10.3390/ijms25126462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The placenta is a crucial determinant of fetal survival, growth, and development. Deficiency in placental development directly causes intrauterine growth retardation (IUGR). IUGR can lead to fetal growth restriction and an increase in the mortality rate. The genetic mechanisms underlying IUGR development, however, remain unclear. In the present study, we integrated whole-genome DNA methylation and transcriptomic analyses to determine distinct gene expression patterns in various placental tissues to identify pivotal genes that are implicated with IUGR development. By performing RNA-sequencing analysis, 1487 differentially expressed genes (DEGs), with 737 upregulated and 750 downregulated genes, were identified in IUGR pigs (H_IUGR) compared with that in normal birth weight pigs (N_IUGR) (p < 0.05); furthermore, 77 miRNAs, 1331 lncRNAs, and 61 circRNAs were differentially expressed. The protein-protein interaction network analysis revealed that among these DEGs, the genes GNGT1, ANXA1, and CDC20 related to cellular developmental processes and blood vessel development were the key genes associated with the development of IUGR. A total of 495,870 differentially methylated regions were identified between the N_IUGR and H_IUGR groups, which included 25,053 differentially methylated genes (DMEs); moreover, the overall methylation level was higher in the H_IUGR group than in the N_IUGR group. Combined analysis showed an inverse correlation between methylation levels and gene expression. A total of 1375 genes involved in developmental processes, tissue development, and immune system regulation exhibited methylation differences in gene expression levels in the promoter regions and gene ontology regions. Five genes, namely, ANXA1, ADM, NRP2, SHH, and SMAD1, with high methylation levels were identified as potential contributors to IUGR development. These findings provide valuable insights that DNA methylation plays a crucial role in the epigenetic regulation of gene expression and mammalian development and that DNA-hypermethylated genes contribute to IUGR development in Rongchang pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Junge Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Xi Long
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Zhi Tu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Siqing Chen
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Lijuan Zhang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Ketian Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Liang Zhang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Zongyi Guo
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China (S.C.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
- Chongqing Modern Agricultural Industry Technology System, Chongqing 401120, China
| |
Collapse
|
2
|
Kang N, Qiu WJ, Wang B, Tang DF, Shen XY. Role of hemoglobin alpha and hemoglobin beta in non-small-cell lung cancer based on bioinformatics analysis. Mol Carcinog 2022; 61:587-602. [PMID: 35394695 DOI: 10.1002/mc.23404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
The differentially expressed genes (DEGs) were identified and screened differentially in non-small-cell lung cancer (NSCLC) using information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases, and the correlation of DEGs in protein interaction, function, and pathway enrichment were analyzed to search for new biomarkers and potential therapeutic targets for NSCLC. Protein-protein interaction network (PPI) analysis showed that CDK1 and GNGT1 were the most significantly upregulated hub nodes, while FPR2 was the most significantly downregulated. Gene Ontology enrichment analysis showed that upregulated DEGs were significantly enriched in protein heterodimerization activity and other functions, while downregulated DEGs were enriched in functions such as heparin-binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that upregulation of DEGs were significantly associated with neuroactive ligand-receptor interaction pathways, while downregulation of DEGs were significantly associated with malaria pathways. According to the analysis results, we identified hemoglobin alpha (HBA) and hemoglobin beta (HBB) as the genes of interest for further study. Through tissue level and cell level experiments, we found that the expressions of HBA and HBB in NSCLC tissues were significantly lower than those in paracancerous tissues, and downregulation of HBA and HBB could significantly affect the proliferation ability of NSCLC cells. In addition, we also found that changes in HBA and HBB may affect NSCLC cells through the p38/MAPK pathway and JNK pathway, and ultimately affect the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Ning Kang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Wen-Jia Qiu
- Department of Respiration, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Bin Wang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Dong-Fang Tang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Xiao-Yong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang JJ, Hong J, Ma YS, Shi Y, Zhang DD, Yang XL, Jia CY, Yin YZ, Jiang GX, Fu D, Yu F. Identified GNGT1 and NMU as Combined Diagnosis Biomarker of Non-Small-Cell Lung Cancer Utilizing Bioinformatics and Logistic Regression. DISEASE MARKERS 2021; 2021:6696198. [PMID: 33505535 PMCID: PMC7806402 DOI: 10.1155/2021/6696198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction (PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411 DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular mechanisms underlying NSCLC's initiation and progression.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiang Hong
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Yu-Shui Ma
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
4
|
Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D, Pulido T, Correa-Jaque P, Passineau MJ, Wiener HW, Tamari M, Hirota T, Kubo M, Tiwari HK. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2016; 192:1345-54. [PMID: 26252367 DOI: 10.1164/rccm.201501-0196oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a progressive fatal disease. Variable response and tolerability to PAH therapeutics suggests that genetic differences may influence outcomes. The endothelin pathway is central to pulmonary vascular function, and several polymorphisms and/or mutations in the genes coding for endothelin (ET)-1 and its receptors correlate with the clinical manifestations of other diseases. OBJECTIVES To examine the interaction of ET-1 pathway polymorphisms and treatment responses of patients with PAH treated with ET receptor antagonists (ERAs). METHODS A total of 1,198 patients with PAH were prospectively enrolled from 45 U.S. and Canadian pulmonary hypertension centers or retrospectively from global sites participating in the STRIDE (Sitaxsentan To Relieve Impaired Exercise) trials. Comprehensive objective measures including a 6-minute-walk test, Borg dyspnea score, functional class, and laboratory studies were completed at baseline, before the initiation of ERAs, and repeated serially. Single-nucleotide polymorphisms from ET-1 pathway candidate genes were selected from a completed genome-wide association study performed on the study cohort. MEASUREMENTS AND MAIN RESULTS Patient efficacy outcomes were analyzed for a relationship between ET-1 pathway polymorphisms and clinical efficacy using predefined, composite positive and negative outcome measures in 715 European descent samples. A single-nucleotide polymorphism (rs11157866) in the G-protein alpha and gamma subunits gene was significantly associated, accounting for multiple testing, with a combined improvement in functional class and 6-minute-walk distance at 12 and 18 months and marginally significant at 24 months. CONCLUSIONS ET-1 pathway associated polymorphisms may influence the clinical efficacy of ERA therapy for PAH. Further prospective studies are needed.
Collapse
Affiliation(s)
- Raymond L Benza
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Mardi Gomberg-Maitland
- 2 Division of Cardiovascular Disease, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Teresa Demarco
- 3 Division of Cardiovascular Disease, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Adam Torbicki
- 5 Department of Pulmonary Circulation and Thromboembolic Diseases, Centre of Postgraduate Medical Education, ECZ, Otwock, Poland
| | - David Langleben
- 6 Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Tomas Pulido
- 7 Cardiopulmonary Department, National Heart Institute, Mexico City, Mexico
| | - Priscilla Correa-Jaque
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J Passineau
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Mayumi Tamari
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomitsu Hirota
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hemant K Tiwari
- 10 Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
5
|
Liu F, Chen J, Yu S, Raghupathy RK, Liu X, Qin Y, Li C, Huang M, Liao S, Wang J, Zou J, Shu X, Tang Z, Liu M. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet 2015; 24:4648-59. [PMID: 26034134 DOI: 10.1093/hmg/ddv197] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiaxiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | | | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Chang Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Mi Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shengjie Liao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiuxiang Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jian Zou
- Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Zhongxin Beilou, Hangzhou, 310029 Zhejiang, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK and and
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| |
Collapse
|
6
|
Khuansuwan S, Gamse JT. Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing. Dev Biol 2014; 395:144-53. [PMID: 25173875 DOI: 10.1016/j.ydbio.2014.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/17/2014] [Accepted: 08/17/2014] [Indexed: 02/03/2023]
Abstract
We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post-fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish.
Collapse
Affiliation(s)
- Sataree Khuansuwan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|