1
|
Nakano S, Nishikawa M, Kobayashi T, Harlin EW, Ito T, Sato K, Sugiyama T, Yamakawa H, Nagase T, Ueda H. The Rho guanine nucleotide exchange factor PLEKHG1 is activated by interaction with and phosphorylation by Src family kinase member FYN. J Biol Chem 2022; 298:101579. [PMID: 35031323 PMCID: PMC8819033 DOI: 10.1016/j.jbc.2022.101579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.
Collapse
Affiliation(s)
- Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | | | - Eka Wahyuni Harlin
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Takuya Ito
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Sugiyama
- Faculty of Pharmacy, Gifu University of Medical Science, Kani, Gifu, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.
| |
Collapse
|
2
|
Zhang K, Li H, Yan Y, Zang Y, Li K, Wang Y, Xue F. Identification of key genes and pathways between type I and type II endometrial cancer using bioinformatics analysis. Oncol Lett 2019; 18:2464-2476. [PMID: 31452737 PMCID: PMC6676660 DOI: 10.3892/ol.2019.10550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Endometrial carcinoma (EC) is a common malignant neoplasm of the female reproductive tract. The malignant degree of type II EC is much greater than that of type I EC, usually presenting with a high recurrence rate and a poor prognosis. Therefore, the present study aimed to examine the principal genes associated with the degree of differentiation in type I and type II EC and reveal their potential mechanisms. Differentially expressed genes (DEGs) were selected from the gene expression profiles derived from The Cancer Genome Atlas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In the present study, the KEGG pathway enrichment analysis revealed that 5,962 upregulated DEGs were significantly enriched in the ‘p53 signaling pathway’ and involved in ‘lysine degradation’. In addition, 3,709 downregulated DEGs were enriched in ‘pathways in cancer’, as well as ‘tight junction regulation’, the ‘cell cycle’ and the ‘Wnt signaling pathway’. The 13 top hub genes MAPK1, PHLPP1, ESR1, MDM2, CDKN2A, CDKN1A, AURKA, BCL2L1, POLQ, PIK3R3, RHOQ, EIF4E and LATS2 were identified via the protein-protein interaction network. Furthermore, the OncoPrint algorithm from cBioPortal declared that 25% of EC cases carried genetic alterations. The altered DEGs (MAPK1, MDM2, AURKA, EIF4E and LATS2) may be involved in tumor differentiation and may be valuable diagnostic biomarkers. In conclusion, a number of principal genes were identified in the present study that may be determinants of poorly differentiated type II EC carcinogenesis, which may contribute to future research into potential molecular mechanisms. In addition, these genes may help identify candidate biomarkers and novel therapeutic targets for type II EC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ke Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
3
|
DBS is activated by EPHB2/SRC signaling-mediated tyrosine phosphorylation in HEK293 cells. Mol Cell Biochem 2019; 459:83-93. [PMID: 31089935 DOI: 10.1007/s11010-019-03552-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
It is well known that Rho family small GTPases (Rho GTPase) has a role of molecular switch in intracellular signal transduction. The switch cycle between GTP-bound and GDP-bound state of Rho GTPase regulates various cell responses such as gene transcription, cytoskeletal rearrangements, and vesicular trafficking. Rho GTPase-specific guanine nucleotide exchange factors (RhoGEFs) are regulated by various extracellular stimuli and activates Rho GTPase such as RhoA, Rac1, and Cdc42. The molecular mechanisms that regulate RhoGEFs are poorly understood. Our studies reveal that Dbl's big sister (DBS), a RhoGEF for Cdc42 and RhoA, is phosphorylated at least on tyrosine residues at 479, 660, 727, and 926 upon stimulation by SRC signaling and that the phosphorylation at Tyr-660 is particularly critical for the serum response factor (SRF)-dependent transcriptional activation of DBS by Ephrin type-B receptor 2 (EPHB2)/SRC signaling. In addition, our studies also reveal that the phosphorylation of Tyr-479 and Tyr-660 on DBS leads to the actin cytoskeletal reorganization by EPHB2/SRC signaling. These findings are thought to be useful for understanding pathological conditions related to DBS such as cancer and non-syndromic autism in future.
Collapse
|
4
|
Nishikawa M, Nakano S, Nakao H, Sato K, Sugiyama T, Akao Y, Nagaoka H, Yamakawa H, Nagase T, Ueda H. The interaction between PLEKHG2 and ABL1 suppresses cell growth via the NF-κB signaling pathway in HEK293 cells. Cell Signal 2019; 61:93-107. [PMID: 31100317 DOI: 10.1016/j.cellsig.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/30/2023]
Abstract
The Rho family small GTPases mediate cell responses through actin cytoskeletal rearrangement. We previously reported that PLEKHG2, a Rho-specific guanine nucleotide exchange factor, is regulated via interaction with several proteins. We found that PLEKHG2 interacted with non-receptor tyrosine kinase ABL1, but the cellular function remains unclear. Here, we show that the interaction between PLEKHG2 and ABL1 attenuated the PLEKHG2-induced serum response element-dependent gene transcription in a tyrosine phosphorylation-independent manner. PLEKHG2 and ABL1 were co-localized and accumulated within cells co-expressing PLEKHG2 and ABL1. The cellular fractionation analysis suggested that the accumulation involved actin cytoskeletal reorganization. We also revealed that the co-expression of PLEKHG2 with ABL1, but not BCR-ABL, suppressed cell growth and synergistically enhanced NF-κB-dependent gene transcription. The cell growth suppression was canceled by co-expression with IκBα, a member of the NF-κB inhibitor protein family. This study suggests that the interaction between PLEKHG2 and ABL1 suppresses cell growth through intracellular protein accumulation via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hiromu Nakao
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Tsuyoshi Sugiyama
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Nagamine Ichihiraga 795-1, Seki, Gifu 501-3892, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hitoshi Nagaoka
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
5
|
Fort P, Blangy A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol Evol 2017; 9:1471-1486. [PMID: 28541439 PMCID: PMC5499878 DOI: 10.1093/gbe/evx100] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
Collapse
Affiliation(s)
- Philippe Fort
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| | - Anne Blangy
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| |
Collapse
|
6
|
Nishikawa M, Sato K, Nakano S, Yamakawa H, Nagase T, Ueda H. Specific activation of PLEKHG2-induced serum response element-dependent gene transcription by four-and-a-half LIM domains (FHL) 1, but not FHL2 or FHL3. Small GTPases 2017; 10:361-366. [PMID: 28489964 DOI: 10.1080/21541248.2017.1327838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PLEKHG2 is a Gβγ- and Gαs-dependent guanine nucleotide exchange factor for Rac1 and Cdc42 small GTPases and has been shown to mediate signaling pathways such as those for actin cytoskeletal reorganization and serum response element (SRE)-dependent gene transcription. We have shown that the four-and-a-half LIM domains (FHL) 1 acts as a positive regulator of PLEKHG2. Here, we evaluated the other FHL family members and found that the FHL1A specifically regulate the PLEKHG2 activity. Moreover, FHL1A further enhanced Gβγ- and PLEKHG2-induced SRE-dependent gene transcription, whereas FHL1A partially restored the attenuated PLEKHG2-induced SRE-dependent gene transcription by Gαs. Our results suggest that FHL1A specifically interacts with PLEKHG2 to regulate a function of PLEKHG2 that is modified by the interaction of Gβγ and Gαs.
Collapse
Affiliation(s)
- Masashi Nishikawa
- a United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Yanagido, Gifu , Japan
| | - Katsuya Sato
- b Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine , Yanagido, Gifu , Japan
| | - Shun Nakano
- c Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu , Japan
| | - Hisashi Yamakawa
- d Kazusa DNA Research Institute, Kazusa-kamatari , Kisarazu, Chiba , Japan
| | - Takahiro Nagase
- d Kazusa DNA Research Institute, Kazusa-kamatari , Kisarazu, Chiba , Japan
| | - Hiroshi Ueda
- a United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Yanagido, Gifu , Japan.,c Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu , Japan
| |
Collapse
|
7
|
Sato K, Kimura M, Sugiyama K, Nishikawa M, Okano Y, Nagaoka H, Nagase T, Kitade Y, Ueda H. Four-and-a-half LIM Domains 1 (FHL1) Protein Interacts with the Rho Guanine Nucleotide Exchange Factor PLEKHG2/FLJ00018 and Regulates Cell Morphogenesis. J Biol Chem 2016; 291:25227-25238. [PMID: 27765816 DOI: 10.1074/jbc.m116.759571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
PLEKHG2/FLJ00018 is a Gβγ-dependent guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. Here we showed that the zinc finger domain-containing protein four-and-a-half LIM domains 1 (FHL1) acts as a novel interaction partner of PLEKHG2 by the yeast two-hybrid system. Among the isoforms of FHL1 (i.e. FHL1A, FHL1B, and FHL1C), FHL1A and FHL1B interacted with PLEKHG2. We found that there was an FHL1-binding region at amino acids 58-150 of PLEKHG2. The overexpression of FHL1A but not FHL1B enhanced the PLEKHG2-induced serum response element-dependent gene transcription. The co-expression of FHL1A and Gβγ synergistically enhanced the PLEKHG2-induced serum response element-dependent gene transcription. Increased transcription activity was decreased by FHL1A knock-out with the CRISPR/Cas9 system. Compared with PLEKHG2-expressing cells, the number and length of finger-like protrusions were increased in PLEKHG2-, Gβγ-, and FHL1A-expressing cells. Our results provide evidence that FHL1A interacts with PLEKHG2 and regulates cell morphological change through the activity of PLEKHG2.
Collapse
Affiliation(s)
- Katsuya Sato
- From the United Graduate School of Drug Discovery and Medical Information Sciences and
| | - Masashi Kimura
- the Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Kazue Sugiyama
- From the United Graduate School of Drug Discovery and Medical Information Sciences and
| | - Masashi Nishikawa
- From the United Graduate School of Drug Discovery and Medical Information Sciences and
| | - Yukio Okano
- the Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hitoshi Nagaoka
- the Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Takahiro Nagase
- the Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan, and
| | - Yukio Kitade
- From the United Graduate School of Drug Discovery and Medical Information Sciences and.,the Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- From the United Graduate School of Drug Discovery and Medical Information Sciences and .,the Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| |
Collapse
|