1
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhou C, He X, Zeng Q, Zhang P, Wang CT. CCDC7 Activates Interleukin-6 and Vascular Endothelial Growth Factor to Promote Proliferation via the JAK-STAT3 Pathway in Cervical Cancer Cells. Onco Targets Ther 2020; 13:6229-6244. [PMID: 32669853 PMCID: PMC7335771 DOI: 10.2147/ott.s244663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Tumor growth is one of the most lethal attributes of human malignancy. The expression of CCDC7, a novel gene which has multiple functions, has been shown to be associated with tumor growth and poor prognosis in patients with cancer. However, the specific functions of CCDC7 remain unclear. Here, we investigated the molecular mechanisms underlying the effects of CCDC7 on proliferation in cervical cancer. Materials and Methods The MTT and EdU assays were performed to evaluate the function of CCDC7. The immunohistochemical, quantitative real-time PCR (qRT-PCR), ELISA and Western blot assay were used to detect the gene and protein expression in tissues and cells. A xenograft test was conducted to detect the impact of CCDC7 on tumor development in vivo . Results In immunohistochemical analysis of 193 cases, normal cervical tissue and cervical cancer tissue show that CCDC7 expression is closely correlated with the development of cervical cancer and was positively correlated with the clinical stage and histological grade. Overexpression or knockdown of CCDC7 affected cell proliferation in cervical cancer cells in vitro. In a nude mouse xenograft model in vivo, knockdown of CCDC7 inhibited cell proliferation and tumor growth. Furthermore, CCDC7 overexpression upregulated interleukin (IL)-6 and vascular endothelial growth factor (VEGF) at mRNA and protein levels, and treatment with recombinant IL-6 or VEGF proteins also increased CCDC7 expression. In a case set of 80 patients with cervical cancer, we found that CCDC7, IL-6, and VEGF affected patient prognosis. Finally, inhibition of various signaling pathways using specific inhibitors indicated that CCDC7 blocked the decrease in cell proliferation observed following suppression of the JAK-STAT3 pathway, suggesting that CCDC7 functioned via this critical signaling network. Conclusion Those findings indicated that CCDC7 may be a novel target for the treatment of cervical cancer and may have applications as a predictive marker for tumor growth in cervical carcinoma.
Collapse
Affiliation(s)
- Cong Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qi Zeng
- Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, People's Republic of China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, People's Republic of China
| | - Chun-Ting Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Oyer HM, Sanders CM, Kim FJ. Small-Molecule Modulators of Sigma1 and Sigma2/TMEM97 in the Context of Cancer: Foundational Concepts and Emerging Themes. Front Pharmacol 2019; 10:1141. [PMID: 31695608 PMCID: PMC6816035 DOI: 10.3389/fphar.2019.01141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
There are two known subtypes of the so-called sigma receptors, Sigma1 and Sigma2. Sigma1 (encoded by the SIGMAR1 gene and also known as Sigma-1 receptor, S1R) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein that allosterically modulates the activity of its associated proteins. Sigma2, recently identified as transmembrane protein 97 (TMEM97), is an integral membrane protein implicated in cellular cholesterol homeostasis. A number of publications over the past two decades have suggested a role for both sigma proteins in tumor biology. Although there is currently no clinically used anti-cancer drug that targets Sigma1 or Sigma2/TMEM97, a growing body of evidence supports the potential of small-molecule compounds with affinity for these proteins, putative sigma ligands, as therapeutic agents to treat cancer. In preclinical models, these compounds have been reported to inhibit cancer cell proliferation, survival, adhesion, and migration; furthermore, they have been demonstrated to suppress tumor growth, to alleviate cancer-associated pain, and to exert immunomodulatory properties. Here, we will address the known knowns and the known unknowns of Sigma1 and Sigma2/TMEM97 ligand actions in the context of cancer. This review will highlight key discoveries and published evidence in support of a role for sigma proteins in cancer and will discuss several fundamental questions regarding the physiological roles of sigma proteins in cancer and sigma ligand mechanism of action.
Collapse
Affiliation(s)
- Halley M Oyer
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Christina M Sanders
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Felix J Kim
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Feng Y, Li Y, Li L, Wang X, Chen Z. Identification of specific modules and significant genes associated with colon cancer by weighted gene co‑expression network analysis. Mol Med Rep 2019; 20:693-700. [PMID: 31180534 DOI: 10.3892/mmr.2019.10295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is one of the most commonly diagnosed malignancies and is a leading cause of cancer‑associated mortality. The aim of the present study was to investigate the molecular mechanisms underlying colon cancer and identify potentially significant genes associated with the disease using weighted gene co‑expression network analysis (WGCNA). The test datasets used were downloaded from The Cancer Genome Atlas (TCGA) database. WGCNA was applied to analyze microarray data obtained from colon adenocarcinoma samples to identify significant modules and highly associated genes. A gene co‑expression network was constructed and different gene modules were selected. Functional and pathway enrichment analyses were performed to investigate the molecular mechanisms of colon cancer. In addition, highly connected hub genes associated with the most significant module were selected for further analysis. Nine specific modules associated with colon cancer were identified, of which the turquoise module was observed to exhibit the greatest association with the disease. Pathway enrichment analysis of the turquoise module suggested that genes in the turquoise module were associated with 'RNA polymerase' and 'purine metabolism'. Furthermore, gene ontology enrichment analysis revealed the top 30 hub genes with a higher degree in the turquoise module, such as σ‑non‑opioid intracellular receptor 1, transmembrane protein 147 TMEM147) and carbamoyl‑phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase, were predominantly enriched in the biological processes 'translation' and 'gene expression'. Experimental verification demonstrated that the expression of TMEM147 in colon cancer was significantly increased compared with the control. Therefore, the results suggested that genes associated with RNA polymerase and the purine metabolic pathways may be substantially involved in the pathogenesis of colon cancer. Furthermore, TMEM147 may represent a biomarker for colon cancer.
Collapse
Affiliation(s)
- Ye Feng
- Department of Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yanbo Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuefeng Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhi Chen
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Sun B, Fan P, Liao M, Zhang Y. Modeling endophilin-mediated Aβ disposal in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1385-1396. [PMID: 30049645 DOI: 10.1016/j.bbamcr.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Autophagy dysregulation has emerged in age-related neurological diseases (Ulland et al.; Matheoud et al.; Ashkenazi et al.). Alzheimer Disease (AD), the most common progressive neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) plaques caused by aberrant Aβ metabolism (Qiang et al.; Sevigny et al.; Ittner et al.). Glia constitute the brain immune system and ingest extracellular Aβ for degradation via the autophagy-lysosome machinery (Ries and Sastre; Cho et al.). Here, we model the molecular rationale for this clearance process in glioma cells by showing that miR34a inhibits autophagy-mediated disposal of Aβ fibrils and identifying two novel direct targets of miR34a, endophilin-3 and cathepsin B (CTSB, a previously reported enzyme for Aβ degrading (Sun et al.)). Bioinformatics analyses revealed that endophilin-3 expresses at a significantly lower level in neurodegenerative diseases. Its gain-of-function substantially promotes both uptake and degradation of Aβ while small interfering RNA (siRNA)-mediated endophilin-3 knockdown slowed down Aβ clearance and blocked autolysosome formation. Mechanistically, gene ontology (GO) analysis of the endophilin-3 interactome identified by mass spectrometry uncovered enriched components involved in actin binding (with the highest score). Importantly, we validated that the actin-binding protein phostensin interacted with endophilin-3. Phostensin knockdown restored endophilin-3-mediated up-regulation of Aβ clearance. Thus, our findings indicate that miR34a inhibits Aβ clearance by targeting endophilin-3 and CTSB at multiple steps including uptake and autophagy-mediated degradation.
Collapse
Affiliation(s)
- Bing Sun
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ping Fan
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Meijian Liao
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China; Open FIESTA Center, Tsinghua University, Shenzhen, PR China.
| |
Collapse
|
6
|
Li YP, Wang WZ, Chen XQ, Li LB, Liang ZY, Ru K, Li JN. Signal Transducer and Activator of Transcription 3 for the Differentiation of Hepatocellular Carcinoma from Cirrhosis. Chin Med J (Engl) 2018; 130:2686-2690. [PMID: 29133756 PMCID: PMC5695053 DOI: 10.4103/0366-6999.218016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Overexpression and constitutive activation of signal transducer and activator of transcription (STAT) 3 have been suggested in the tumorigenesis of many human cancers, including multiple carcinomas, melanoma, and lymphoma. The diagnosis of hepatocellular carcinoma (HCC) in lobectomy specimens is usually straightforward, but distinguishing cirrhosis from well-differentiated HCC can be challenging in core biopsies. Our aims were to investigate the expression level of STAT3 and phosphorylated STAT3 (pSTAT3) in HCC and cirrhosis, and the application of STAT3 in the differential diagnosis of HCC and cirrhosis. Methods: Sixty cases were divided into three groups: patients with HCC only (Group 1), HCC and cirrhosis (Group 2), and cirrhosis only (Group 3). Formalin-fixed and paraffin-embedded tissue sections were stained immunohistochemically for STAT3, pSTAT3, and CD163. The values obtained from the tissue sections of each group were compared in statistical analysis. Results: STAT3 showed a high level in HCC and was a significant marker for differentiating HCC from cirrhosis (P < 0.0001). The odds ratio between HCC and cirrhosis increased 34.4 times when the intensity of STAT3 increased by 1 level. Spearman's correlation and Chi-square tests also demonstrated that expression level of STAT3 did not correlate with age, gender, or the presence of a cirrhotic background. Conclusions: STAT3 staining differs significantly in HCC and cirrhosis. The findings reinforce the role of STAT3 in the tumorigenesis of HCC and provide a useful marker to differentiate HCC from cirrhosis in challenging liver biopsies.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wen-Ze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xue-Qi Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ling-Bo Li
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kun Ru
- Department of Pathology, Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Jing-Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Abstract
The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 activation correlates with Gleason score and pathological stage and modulates cancer stem cells and epithelial-mesenchymal transition. In addition, STAT3 promotes the progression from carcinoma in situ to invasive bladder cancer and modulates renal cell carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients with metastatic renal cell carcinoma, and to second-generation androgen receptor inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we describe the role of STAT3 in genitourinary tumors, thus describing its potential for future therapeutic strategies.
Collapse
|
8
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
9
|
Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, Montironi R, Santini D, Danesi R, Tortora G, Cascinu S. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs 2015; 24:809-24. [PMID: 25746129 DOI: 10.1517/13543784.2015.1020370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) mediates the expression of a variety of genes in response to cell stimuli and thus plays a key role in several cellular processes such as cell growth and apoptosis. Deregulation of the STAT3 activity has been shown in many malignancies, including breast, head and neck, prostate, pancreas, ovarian and brain cancers and melanoma. Thus, STAT3 may represent an ideal target for cancer therapy. AREAS COVERED The authors review recent data on the role of STAT3 in tumor initiation and progression, as well as the ongoing clinical trials in cancer patients. The content includes information derived from trial databases, regulatory authorities and scientific literature. EXPERT OPINION Targeting STAT3 activation leads to the inhibition of tumor growth and metastasis both in vitro and in vivo without affecting normal cells; this suggests that STAT3 could be a valid molecular target for cancer therapy. Extensive clinical research is trying to find anti-STAT3 agents with high single-agent activity. The identification and development of novel drugs that can target deregulated STAT3 activation effectively is both a scientific and clinical challenge that needs to be addressed in the near future.
Collapse
Affiliation(s)
- Matteo Santoni
- Polytechnic University of the Marche Region, Medical Oncology, AOU Ospedali Riuniti , via Conca 71, 60126 Ancona , Italy +39 0715964263 ; +39 0715964269 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|