1
|
De Feo D, Massari F, Campanella C, Livrieri A, Ciccone MM, Caldarola P, De Palo M, Scicchitano P. Influence of Soluble Guanylate Cyclase on Cardiac, Vascular, and Renal Structure and Function: A Physiopathological Insight. Int J Mol Sci 2025; 26:4550. [PMID: 40429695 PMCID: PMC12110928 DOI: 10.3390/ijms26104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The role of nitric oxide (NO), soluble guanylate cyclase (sGC), and the cyclic guanosine monophosphate (cGMP) pathway in cardiovascular and renal health and disease is a complex issue. The impact of these biochemical pathways on the vascular tree is well established: the activation of sGC by NO promotes vasodilation and modulates vascular tone. Indeed, additional characteristics exist that lead physicians to believe there is a pleiotropic influence of this pathway on the functional activities and structural characteristics of human tissues and cells. Recently, sGC stimulators have demonstrated clinical efficacy in patients with worsening heart failure with reduced ejection fraction, improving cardiovascular death risk, re-hospitalization for HF, and all-cause mortality. These new outcome data have increased interest in understanding the potential pathophysiological mechanisms. The NO-sGC-cGMP axis may influence endothelial function, kidney performance, and cardiac muscle cell activity. The synergy of these actions could explain the positive effects of vericiguat on worsening HF. The aim of this narrative review was to provide a comprehensive insight into the pathophysiological mechanisms of action of NO-sGC-cGMP axis stimulators on cardiac muscle, endothelial cells, and kidneys.
Collapse
Affiliation(s)
- Daniele De Feo
- Cardiology Section, University of Bari, 70121 Bari, Italy; (D.D.F.); (A.L.); (M.M.C.)
| | - Francesco Massari
- Cardiology Section, Hospital “F. Perinei” Altamura (BA), 70022 Altamura, Italy;
| | - Cosimo Campanella
- Cardiology Department, Hospital “San Paolo” Bari, 70132 Bari, Italy; (C.C.); (P.C.)
| | - Anna Livrieri
- Cardiology Section, University of Bari, 70121 Bari, Italy; (D.D.F.); (A.L.); (M.M.C.)
| | - Marco Matteo Ciccone
- Cardiology Section, University of Bari, 70121 Bari, Italy; (D.D.F.); (A.L.); (M.M.C.)
| | - Pasquale Caldarola
- Cardiology Department, Hospital “San Paolo” Bari, 70132 Bari, Italy; (C.C.); (P.C.)
| | - Micaela De Palo
- Cardiac Surgery Section, University of Bari, 70121 Bari, Italy;
| | - Pietro Scicchitano
- Cardiology Section, Hospital “F. Perinei” Altamura (BA), 70022 Altamura, Italy;
| |
Collapse
|
2
|
Woźnicki P, Bartusik-Aebisher D, Przygórzewska A, Aebisher D. Molecular mechanisms of the effects of photodynamic therapy on the brain: A review of the literature. Photodiagnosis Photodyn Ther 2025; 52:104536. [PMID: 40023269 DOI: 10.1016/j.pdpdt.2025.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most common primary brain tumors in adults. These tumors have a diverse molecular origin and a very poor prognosis. There is a lack of effective treatment at WHO grade IV glioma, and all glioblastomas progress or recur. Current treatments including surgical intervention, radiation therapy, and chemotherapy are insufficient and can cause damage to healthy brain tissue and neurological deficits. The preservation of healthy brain tissue during therapeutic intervention is made extremely difficult by the ability of malignant gliomas to diffusely infiltrate the surrounding brain parenchyma. Photodynamic therapy (PDT) is a treatment modality for glioma that can possibly overcome the inherent shortcommings of traditional therapies. Photodynamic therapy involves the use of a photosensitizer (PS) which, upon absorption of light by photosensitized tissue, triggers photochemical reactions generating reactive oxygen species (ROS) leading to the killing of tumor cells. Research focusing on the effective use of PDT in the treatment of glioma is already underway with promising results. Clinical studies on PDT for the treatment of gliomas have shown it to be a safe therapeutic modality with acceptable levels of side effects. However, some adverse sequelae have been observed during PDT of these tumours, such as increased photosensitivity, increased intracranial pressure or transient aphasia and worsening of pre-existing neurological deficits. Although the clinical sequelae of PDT are well described, the molecular mechanisms of PDT's effects on the healthy brain have not yet been thoroughly characterized. In our work, we attempt to summarize the molecular mechanisms of the effects of photosensitization on neural tissue, brain vasculature and the blood-brain barrier (BBB). We also point to findings presenting molecular approaches to protect the healthy brain from the adverse effects of photodynamic damage.
Collapse
Affiliation(s)
- Paweł Woźnicki
- Doctoral School, Medical College of the University of Rzeszów, Rzeszów 35-310, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland.
| |
Collapse
|
3
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
4
|
Yang L, Liu X, Chen Y, Shen B. An update on the CHDGKB for the systematic understanding of risk factors associated with non-syndromic congenital heart disease. Comput Struct Biotechnol J 2021; 19:5741-5751. [PMID: 34765091 PMCID: PMC8556603 DOI: 10.1016/j.csbj.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 02/05/2023] Open
Abstract
The Congenital Heart Disease Genetic Knowledge Base (CHDGKB) was established in 2020 to provide comprehensive knowledge about the genetics and pathogenesis of non-syndromic CHD (NS-CHD). In addition to the genetic causes of NS-CHD, environmental factors such as maternal drug use and gene-environment interactions can also lead to CHD. There is a need to integrate this information into a platform for clinicians and researchers to better understand the overall risk factors associated with NS-CHD. The updated CHDGKB contains the genetic and non-genetic risk factors from over 4200 records from PubMed that was manually curated to include the information associated with NS-CHD. The current version of CHDGKB, named CHD-RF-KB (KnowledgeBase for non-syndromic Congenital Heart Disease-associated Risk Factors), is an important tool that allows users to evaluate the recurrence risk and prognosis of NS-CHD, to guide treatment and highlight the precautions of NS-CHD. In this update, we performed extensive functional analyses of the genetic and non-genetic risk information in CHD-RF-KB. These data can be used to systematically understand the heterogeneous relationship between risk factors and NS-CHD phenotypes.
Collapse
Affiliation(s)
- Lan Yang
- Center of Prenatal Diagnosis, Wuxi Maternal and Child Health Hospital affiliated to Nanjing Medical University, Wuxi, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yalan Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Tange R, Tachibana R, Sato T. Phosphorylation of Specificity Protein 3 Is Critical for Activation of β4-Galactosyltransferase 3 Gene Promoter in SH-SY5Y Human Neuroblastoma Cell Line. Biol Pharm Bull 2021; 44:557-563. [PMID: 33504757 DOI: 10.1248/bpb.b20-00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated expression of β4-galactosyltransferase (β4GalT) 3 is correlated with poor clinical outcome of neuroblastoma patients. Our recent study has revealed that the transcription of the β4GalT3 gene is activated by Specificity protein (Sp) 3 in SH-SY5Y human neuroblastoma cell line. Here we report the biological significance of the Sp3 phosphorylation in the transcriptional activation of the β4GalT3 gene. The treatment of SH-SY5Y cells with 10% fetal bovine serum (FBS) increased the mitogen-activated protein kinase (MAPK) signaling and the promoter activity of the β4GalT3 gene. Meanwhile, the treatment with U0126, an inhibitor for MAPK kinase, decreased the MAPK signaling and the promoter activity. These findings indicate that the transcriptional activation of the β4GalT3 gene is mediated by the MAPK signaling. In SH-SY5Y cells cultured in the medium containing 10% FBS, the serine (Ser) residues in Sp3 were phosphorylated. Human Sp3 contains four Ser residues, Ser73, Ser563, Ser566, and Ser646, as the putative phosphorylation sites. Sp3 mutant with the mutation of Ser73 did not decrease the promoter activation of the β4GalT3 gene, indicating that Ser73 is uninvolved in the promoter activation of the β4GalT3 gene by Sp3. In contrast, Sp3 mutants with the mutations of Ser563, Ser566, and Ser646 significantly reduced the promoter activation by Sp3. The results suggest that the phosphorylation of these Ser residues is implicated in the promoter activation by Sp3. This study demonstrates that the phosphorylation of Sp3 plays important roles in the transcriptional activation of the β4GalT3 gene in human neuroblastoma.
Collapse
Affiliation(s)
- Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Ryuji Tachibana
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
6
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
7
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Schramm A, Schweda F, Sequeira-Lopez MLS, Hofmann F, Sandner P, Schlossmann J. Protein Kinase G Is Involved in Acute but Not in Long-Term Regulation of Renin Secretion. Front Pharmacol 2019; 10:800. [PMID: 31379575 PMCID: PMC6657341 DOI: 10.3389/fphar.2019.00800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Pharmacological inhibition of the renin–angiotensin–aldosterone system (RAAS) is, in combination with diuretics, the first-choice treatment for hypertension, although 10–20% of patients do not respond adequately. Next to the RAAS, the nitric oxide/cGMP/protein kinase G (PKG) system is the second fundamental blood pressure regulator. Whether both systems influence each other is not well-studied. It has been shown that nitric oxide (NO) supports renin recruitment via activation of soluble guanylate cyclase (sGC) and subsequent generation of cGMP. Whether this leads to an ensuing activation of PKGs in this context is not known. PKGIα, as well as PKGII, is expressed in renin-producing cells. Hence, we analyzed whether these enzymes play a role regarding renin synthesis, secretion, or recruitment. We generated renin-cell-specific PKGI-knockout mice and either stimulated or inhibited the renin system in these mice by salt diets. To exclude the possibility that one kinase isoform can compensate the lack of the other, we also studied double-knockout animals with a conditional knockout of PKGI in juxtaglomerular cells (JG cells) and a ubiquitous knockout of PKGII. We analyzed blood pressure, renin mRNA and renal renin protein content as well as plasma renin concentration. Furthermore, we stimulated the cGMP system in these mice using BAY 41-8543, an sGC stimulator, and examined renin regulation either after acute administration or after 7 days (application once daily). We did not reveal any striking differences regarding long-term renin regulation in the studied mouse models. Yet, when we studied the acute effect of BAY 41-8543 on renin secretion in isolated perfused kidneys as well as in living animals, we found that the administration of the substance led to a significant increase in plasma renin concentration in control animals. This effect was completely abolished in double-knockout animals. However, after 7 days of once daily application, we did not detect a persistent increase in renin mRNA or protein in any studied genotype. Therefore, we conclude that in mice, cGMP and PKG are involved in the acute regulation of renin release but have no influence on long-term renin adjustment.
Collapse
Affiliation(s)
- Andrea Schramm
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
| | - Peter Sandner
- Bayer AG, Drug Discovery-Cardiology, Wuppertal, Germany
| | - Jens Schlossmann
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Tang VT, Arscott P, Helms AS, Day SM. Whole-Exome Sequencing Reveals
GATA4
and
PTEN
Mutations as a Potential Digenic Cause of Left Ventricular Noncompaction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001966. [DOI: 10.1161/circgen.117.001966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vi T. Tang
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Patricia Arscott
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Adam S. Helms
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Sharlene M. Day
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| |
Collapse
|
10
|
Straubinger J, Boldt K, Kuret A, Deng L, Krattenmacher D, Bork N, Desch M, Feil R, Feil S, Nemer M, Ueffing M, Ruth P, Just S, Lukowski R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4-negative mouse hearts. FASEB J 2017; 31:1620-1638. [PMID: 28138039 DOI: 10.1096/fj.201601186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.
Collapse
Affiliation(s)
- Julia Straubinger
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lisa Deng
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Diana Krattenmacher
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nadja Bork
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Matthias Desch
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology, and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marius Ueffing
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany;
| |
Collapse
|
11
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|