1
|
Zhou Y, Chen Q, Zhang W, Ye L, Wang Y. The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway. Lasers Med Sci 2025; 40:52. [PMID: 39873791 DOI: 10.1007/s10103-025-04303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
PURPOSE The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway. METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm2 LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups. The addition of BIX02189 could block the ERK5 signaling pathway. Under irradiation with 5J/cm2 LED red light, the expression levels of the ERK5 gene, related proteins ERK5, p-ERK5, as well as early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by qRT-PCR and Western blot in the osteogenic medium group and the osteogenic medium + BIX02189 group. RESULTS: Both low-energy LED red light and osteogenic medium could induce osteogenesis and differentiation of PDLSCs, upregulating the expression of ALP, Col-1, BSP, and OPN genes in PDLSCs. Their combination also produced a synergistic effect. Moreover, the ERK5 signaling pathway participated in the promoting effect of LED red light on the early to middle-stage osteogenic differentiation of PDLSCs, indicating a positive role of LED red light in this process. CONCLUSIONS: The ERK5 signaling pathway can mediate the promotion of early to middle-stage osteogenic differentiation of PDLSCs by low-energy LED red light.
Collapse
Affiliation(s)
- Yan Zhou
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Chen
- The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, 610100, China
| | - Wantong Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Lin Ye
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yao Wang
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Xing Z, Hao Z, Zeng Y, Tan J, Zhang Z, Zhao Y, Zhu H, Li M. Impinging Flow Mediates Vascular Endothelial Cell Injury through the PKCα/ERK/PPARγ Pathway in vitro. Cerebrovasc Dis 2024; 54:215-227. [PMID: 38688248 DOI: 10.1159/000539000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION This study aimed to elucidate the mechanisms underlying endothelial injury in the context of intracranial aneurysm formation and development, which are associated with vascular endothelial injury caused by hemodynamic abnormalities. Specifically, we focus on the involvement of PKCα, an intracellular signaling transmitter closely linked to vascular diseases, and its role in activating MAPK. Additionally, we investigate the protective effects of PPARγ, a vasculoprotective factor known to attenuate vascular injury by mitigating the inflammatory response in the vessel wall. METHODS The study employs a modified T-chamber to replicate fluid flow conditions at the artery bifurcation, allowing us to assess wall shear stress effects on human umbilical vein endothelial cells in vitro. Through experimental manipulations involving PKCα knockdown and Ca2+ and MAPK inhibitors, we evaluated the phosphorylation status of PKCα, NF-κB, ERK5, ERK1/2, JNK1/2/3, and P38, as well as the expression levels of PPARγ, NF-κB, and MMP2 via Western blot analysis. The cellular localization of phosphorylated NF-κB was determined using immunofluorescence. RESULTS Our results showed that impinging flow resulted in the activation of PKCα, followed by the phosphorylation of ERK5, ERK1/2, and JNK1/2/3, leading to a decrease in PPARγ expression, an increase in the expression of NF-κB and MMP2, and the induction of apoptotic injury. Inhibition of PKCα activation or knockdown of PKCα using shRNA leads to a suppression of ERK5, ERK1/2, JNK1/2/3, and P38 phosphorylation, an elevation in PPARγ expression, and a reduction in NF-κB and MMP2 expression, alleviated apoptotic injury. Furthermore, we observe that the regulation of PPARγ, NF-κB, and MMP2 expression is influenced by ERK5 and ERK1/2 phosphorylation, and activation of PPARγ effectively counteracts the elevated expression of NF-κB and MMP2. CONCLUSION Our findings suggest that the PKCα/ERK/PPARγ pathway plays a crucial role in mediating endothelial injury under conditions of impinging flow, with potential implications for vascular diseases and intracranial aneurysm development.
Collapse
Affiliation(s)
- Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Zheng Hao
- Trauma Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Liu J, Xu S, Liu S, Chen B. miR‑3613‑3p/MAP3K2/p38/caspase‑3 pathway regulates the heat‑stress‑induced apoptosis of endothelial cells. Mol Med Rep 2021; 24:633. [PMID: 34278472 PMCID: PMC8280962 DOI: 10.3892/mmr.2021.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/11/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have identified microRNA (miRNA/miR)-3613-3p as a heat stress (HS)-related miRNA in endothelial cells that can lead to apoptosis. However, the mechanism underlying the miR-3613-3p-mediated apoptosis of HS-exposed endothelial cells remains unclear. In the present study, western blot analysis and reverse transcription-quantitative PCR were used to determine protein and miRNA expression levels, respectively. Annexin V-fluorescein isothiocyanate/propidium iodide staining, caspase-3 activity measurements and DNA fragmentation assays were performed to detect apoptosis. To evaluate whether mitogen-activated protein kinase kinase kinase 2 (MAP3K2) was a direct target of miR-3613-3p, a luciferase reporter assay was performed. In addition, transient transfection was used to carry out loss- and gain-of-function experiments. The results revealed that miR-3613-3p expression was reduced in human umbilical vein endothelial cells (HUVECs) following HS, which led to apoptosis. Mechanistically, following HS, a decrease in miR-3613-3p binding to the 3′-untranslated region of MAP3K2 directly upregulated its expression, and the downstream p38 and caspase-3 pathways, thereby leading to apoptosis. Taken together, the results of the present study demonstrated that HS suppressed miR-3613-3p expression, which activated the MAP3K2/p38/caspase-3 pathway, leading to the apoptosis of HUVECs. In conclusion, the miR-3613-3p/MAP3K2/p38/caspase-3 pathway may serve an indispensable role in regulating the progression of apoptosis, indicating a regulatory role of miR-3613-3p in the pathophysiology of HS-exposed endothelial cells.
Collapse
Affiliation(s)
- Jie Liu
- Department of Intensive Care Unit, Hefei Boe Hospital Co., Ltd., Hefei, Anhui 230011, P.R. China
| | - Siya Xu
- Department of Emergency, Central Theater General Hospital of The People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Central Theater General Hospital of The People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Bingguan Chen
- Department of General Surgery, Hefei Boe Hospital Co., Ltd., Hefei, Anhui 230011, P.R. China
| |
Collapse
|
4
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
5
|
Paek SC, Min SK, Park JB. Effects of platelet-derived growth factor-BB on cellular morphology and cellular viability of stem cell spheroids composed of bone-marrow-derived stem cells. Biomed Rep 2020; 13:59. [PMID: 33123373 PMCID: PMC7583700 DOI: 10.3892/br.2020.1366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogenic, angiogenic and chemoattractant, and is one of the most abundant growth factors in platelet-derived products. The goal of the present study was to examine the effects of PDGF-BB on cellular morphology and cellular viability using 3D stem cell cultures. On day 1, spheroids formed well in silicon-elastomer-based concave microwells. The addition of 10 or 100 ng/ml PDGF-BB did not affect the morphology of the cell spheroids. During longer periods of incubation, the cell spheroids maintained their shape without noticeable alterations. The majority of cells in the spheroids exhibited green fluorescence when analyzed using a live/dead assay, indicative of live cells. On day 1, the Cell Counting Kit-8 (CCK-8) assay values for PDGF-BB at 0, 10 and 100 ng/ml were 0.241±0.003, 0.227±0.001 and 0.241±0.004, respectively; on day 3, the CCK-8 assay values for PDGF-BB were 0.233±0.005, 0.278±0.001 and 0.194±0.003, respectively; and on day 7, they were 0.248±0.014, 0.293±0.031 and 0.346±0.034, respectively. The 100 ng/ml group showed significantly higher values compared with the control group on day 7. Together, the results of the present study showed that the addition of 10 and 100 ng/ml PDGF-BB increased cellular viability, suggesting that PDGF-BB may be usable in cell therapy.
Collapse
Affiliation(s)
- Soung-Chu Paek
- Department of Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Tsioumpekou M, Cunha SI, Ma H, Åhgren A, Cedervall J, Olsson AK, Heldin CH, Lennartsson J. Specific targeting of PDGFRβ in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression. Am J Cancer Res 2020; 10:1122-1135. [PMID: 31938055 PMCID: PMC6956815 DOI: 10.7150/thno.37851] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023] Open
Abstract
PDGF-BB/PDGFRβ signaling plays an important role during vascularization by mediating pericyte recruitment to the vasculature, promoting the integrity and function of vessels. Until now it has not been possible to assess the specific role of PDGFRβ signaling in tumor progression and angiogenesis due to lack of appropriate animal models and molecular tools. Methods: In the present study, we used a transgenic knock-in mouse strain carrying a silent mutation in the PDGFRβ ATP binding site that allows specific targeting of PDGFRβ using the compound 1-NaPP1. To evaluate the impact of selective PDGFRβ inhibition of stromal cells on tumor growth we investigated four tumor cell lines with no or low PDGFRβ expression, i.e. Lewis lung carcinoma (LLC), EO771 breast carcinoma, B16 melanoma and a version of B16 that had been engineered to overexpress PDGF-BB (B16/PDGF-BB). Results: We found that specific impairment of PDGFRβ kinase activity by 1-NaPP1 treatment efficiently suppressed growth in tumors with high expression of PDGF-BB, i.e. LLC and B16/PDGF-BB, while the clinically used PDGFRβ kinase inhibitor imatinib did not suppress tumor growth. Notably, tumors with low levels of PDGF-BB, i.e. EO771 and B16, neither responded to 1-NaPP1 nor to imatinib treatment. Inhibition of PDGFRβ by either drug impaired tumor vascularization and also affected pericyte coverage; however, specific targeting of PDGFRβ by 1-NaPP1 resulted in a more pronounced decrease in vessel function with increased vessel apoptosis in high PDGF-BB expressing tumors, compared to treatment with imatinib. In vitro analysis of PDGFRβ ASKA mouse embryo fibroblasts and the mesenchymal progenitor cell line 10T1/2 revealed that PDGF-BB induced NG2 expression, consistent with the in vivo data. Conclusion: Specific targeting of PDGFRβ signaling significantly inhibits tumor progression and angiogenesis depending on PDGF-BB expression. Our data suggest that targeting PDGFRβ in the tumor stroma could have therapeutic value in patients with high tumor PDGF-BB expression.
Collapse
|
7
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
8
|
Ouyang L, Zhang K, Chen J, Wang J, Huang H. Roles of platelet-derived growth factor in vascular calcification. J Cell Physiol 2017; 233:2804-2814. [PMID: 28467642 DOI: 10.1002/jcp.25985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is prevalent in aging, and patients with hypertension, chronic kidney disease (CKD), or diabetes. VC is regarded as an active and complex process that involves multiple mechanisms responsible for calcium deposition in vessel wall. In light of the complicated pathogenesis of VC, effective therapy for ameliorating VC is limited. Thus, it is urgent to explore the potential mechanisms and find new targets for the therapy of VC. Platelet-derived growth factor (PDGF), a potent mitogen, and chemoattractant have been found to disturb the vascular homeostasis by inducing inflammation, oxidative stress, and phenotype transition, all of which accelerate the process of VC. The aim of current review is to present a review about the roles of PDGF in affecting VC and to establish a potential target for treating VC.
Collapse
Affiliation(s)
- Liu Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Davies OG, Grover LM, Lewis MP, Liu Y. PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification. J Tissue Eng Regen Med 2017; 12:e355-e367. [PMID: 27696748 PMCID: PMC6084375 DOI: 10.1002/term.2320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue‐engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated ‘reserve’ cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that ‘reserve’ cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet‐derived growth factor (PDGF)‐BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca‐1+/CD73+ phenotype. Alizarin red staining showed that PDGF‐BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF‐induced mineralization was blocked in the presence of the pro‐inflammatory cytokines tumour necrosis factor‐α and interleukin 1. In conclusion, the present study identified that PDGF‐BB is a potent osteoinductive factor in a model of tissue‐engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro‐inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Owen G Davies
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Yang Liu
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|