1
|
Wang S, Sun Z, Wang C, Zhang A, Zhang C, Hou S, Lin N, Li Q. The JAK1/STAT3 pathway mediates the effects of SERPINH1 on glioma EMT. Int Immunopharmacol 2025; 157:114731. [PMID: 40334628 DOI: 10.1016/j.intimp.2025.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
Glioma is marked by swift cell proliferation, extensive invasion and poor outcomes. Serine protease inhibitor H1 (SERPINH1) encoding heat shock protein 47, a collagen-specific molecular chaperone, plays a role in a number of cancers. However, its definite role in glioma remains unclear. The aim of the present study was to investigate the role of SERPINH1 in glioma progression, especially its impact on cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT). The glioma cell lines LN229, T98, U251 and U87MG were transfected with lentivirus for stable knockdown or overexpression of SERPINH1. Assays assessing cell proliferation, migration and invasion were conducted to investigate the role of SERPINH1 in these processes. Bioinformatic analysis was conducted using The Cancer Genome Atlas and the Chinese Glioma Genome Atlas databases to identify potential molecular pathways associated with SERPINH1. Western blotting (WB) was employed to examine the expression of significant proteins in the JAK1/STAT3 signaling pathway and EMT markers. Nude mice were used for in vivo experiments to evaluate tumor growth and changes related to EMT. Overexpression of SERPINH1 notably increased glioma cell proliferation, migration and invasion, whereas knockdown suppressed these activities. Bioinformatic analyses revealed that SERPINH1 is closely associated with the JAK1/STAT3 signaling pathway and EMT-related genes. WB results confirmed that SERPINH1 regulates the activation of JAK1/STAT3 and influences the levels of EMT markers such as N- and E-cadherin. The JAK1/STAT3 agonist RO8191 partially rescued glioma cell behavior in the SERPINH1 knockdown group, while the inhibitor STATTIC partially weakened the enhanced effects in the SERPINH1 overexpression group. In vivo, SERPINH1 overexpression accelerated tumor growth and EMT progression, while knockdown resulted in a reduction in tumor size and the expression of EMT markers. SERPINH1 is essential for glioma progression, enhancing cell proliferation, migration, invasion and EMT by activating the JAK1/STAT3 signaling pathway. These results indicate that targeting SERPINH1 could provide a promising new approach for glioma therapy.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Zhiming Sun
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Chao Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Antian Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Chao Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China
| | - Ning Lin
- Department of Neurosurgery, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China.
| | - Qun Li
- Health Examination Center, The First People's Hospital of Chuzhou, Anhui, China, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou Road, Chuzhou 239001, China.
| |
Collapse
|
2
|
Zhu X, Lin SQ, Xie J, Wang LH, Zhang LJ, Xu LL, Xu JG, Lv YB. Biomarkers of lymph node metastasis in colorectal cancer: update. Front Oncol 2024; 14:1409627. [PMID: 39328205 PMCID: PMC11424378 DOI: 10.3389/fonc.2024.1409627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths globally, trailing only behind lung cancer, and stands as the third most prevalent malignant tumor, following lung and breast cancers. The primary cause of mortality in colorectal cancer (CRC) stems from distant metastasis. Among the various routes of metastasis in CRC, lymph node metastasis predominates, serving as a pivotal factor in both prognostication and treatment decisions for patients. This intricate cascade of events involves multifaceted molecular mechanisms, highlighting the complexity underlying lymph node metastasis in CRC. The cytokines or proteins involved in lymph node metastasis may represent the most promising lymph node metastasis markers for clinical use. In this review, we aim to consolidate the current understanding of the mechanisms and pathophysiology underlying lymph node metastasis in colorectal cancer (CRC), drawing upon insights from the most recent literatures. We also provide an overview of the latest advancements in comprehending the molecular underpinnings of lymph node metastasis in CRC, along with the potential of innovative targeted therapies. These advancements hold promise for enhancing the prognosis of CRC patients by addressing the challenges posed by lymph node metastasis.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shui-Quan Lin
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Xie
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Hui Wang
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Juan Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Ling Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Guang Xu
- Department of Gastroenterology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yang-Bo Lv
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
3
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
5
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF THE REVIEW Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research. RECENT FINDINGS Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.
Collapse
Affiliation(s)
- Ghada Elayat
- Department of Natural Science, Middlesex University, London, UK
- Department of Histopathology, Tanta University, Tanta, Egypt
| | - Ivan Punev
- Department of Natural Science, Middlesex University, London, UK
| | - Abdel Selim
- Histopathology Department, King’s Health Partners, King’s College Hospital, London, UK
| |
Collapse
|
7
|
Molony RD, Wu CH, Lee YF. E-liquid exposure induces bladder cancer cells to release extracellular vesicles that promote non-malignant urothelial cell transformation. Sci Rep 2023; 13:142. [PMID: 36599909 PMCID: PMC9813241 DOI: 10.1038/s41598-022-27165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The vaping of electronic cigarettes (E-cigarettes) has recently emerged as a popular alternative to traditional cigarette smoking, but its association with bladder cancer (BC) risk remains to be established. BC patients exhibit high rates of recurrent disease, possibly as a consequence of the field cancerization effect. We have shown that BC-derived extracellular vesicles (BCEVs) can permanently alter recipient urothelial cells in predisposed fields such that they become fully transformed malignant cells. To model the role that BCEVs may play in this potentially oncogenic setting, we treated TCCSUP BC cells with cigarette smoke extract, unflavored E-liquid, or menthol flavored E-liquid. Those treated BCEVs were then tested for their tumorigenic potential. We found that these smoking- and E-cigarette-related BCEVs were able to promote oxidative stress, inflammatory signaling, and DNA damage in recipient SV-HUC urothelial cells. Strikingly, menthol E-liquid-induced BCEVs significantly increased rates of malignant urothelial cell transformation. While further in vivo validation of the simultaneous effects of E-liquid and E-liquid-induced BCEVs on field cancerization is needed, these data highlight the possibility that E-cigarettes may compound user risk in a manner that can contribute to higher rates of BC incidence or recurrence.
Collapse
Affiliation(s)
- Ryan D. Molony
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA
| | - Chia-Hao Wu
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA
| | - Yi-Fen Lee
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA ,grid.16416.340000 0004 1936 9174Wilmot Cancer Center, University of Rochester, Rochester, USA ,grid.16416.340000 0004 1936 9174Department of Pathology, University of Rochester, Rochester, USA
| |
Collapse
|
8
|
Song F, Kotolloshi R, Gajda M, Hölzer M, Grimm MO, Steinbach D. Reduced IQGAP2 Promotes Bladder Cancer through Regulation of MAPK/ERK Pathway and Cytokines. Int J Mol Sci 2022; 23:ijms232113508. [PMID: 36362301 PMCID: PMC9655856 DOI: 10.3390/ijms232113508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is a major challenge in urologic oncology. However, understanding of the molecular processes remains limited. The dysregulation of IQGAP2 is becoming increasingly evident in most tumor entities, and it plays a role in multiple oncogenic pathways, so we evaluated the role of IQGAP2 in bladder cancer. IQGAP2 was downregulated in tumors compared with normal urothelium tissues and cells. IQGAP2 effectively attenuated bladder cancer cell growth independently from apoptosis. Reduced IQGAP2 promoted EMT in bladder cancer cells via activation of the MAPK/ERK pathway. In addition, IQGAP2 might influence key cellular processes, such as proliferation and metastasis, through the regulation of cytokines. In conclusion, we suggest that IQGAP2 plays a tumor-suppressing role in bladder cancer, possibly via inhibiting the MAPK/ERK pathway and reducing cytokines.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Roland Kotolloshi
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Mieczyslaw Gajda
- Section of Pathology, Department of Forensic Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
9
|
Johnson S, Karpova Y, Guo D, Ghatak A, Markov DA, Tulin AV. PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer 2022; 22:557. [PMID: 35585513 PMCID: PMC9118775 DOI: 10.1186/s12885-022-09651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly (ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly (ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG's overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3 T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells' tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3 T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.
Collapse
Affiliation(s)
- Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Dmitriy A. Markov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084 USA
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| |
Collapse
|
10
|
Li Y, Chen X, Li D, Yang Z, Bai Y, Hu S, Liu Z, Gu J, Zhang X. Identification of prognostic and therapeutic value of CC chemokines in Urothelial bladder cancer: evidence from comprehensive bioinformatic analysis. BMC Urol 2021; 21:173. [PMID: 34893045 PMCID: PMC8665633 DOI: 10.1186/s12894-021-00938-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Urothelial bladder cancer (BC) is one of the most prevalent malignancies with high mortality and high recurrence rate. Angiogenesis, tumor growth and metastasis of multiple cancers are partly modulated by CC chemokines. However, we know little about the function of distinct CC chemokines in BC. METHODS ONCOMINE, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, GeneMANIA, and TIMER were used for analyzing differential expression, prognostic value, protein-protein interaction, genetic alteration and immune cell infiltration of CC chemokines in BC patients based on bioinformatics. RESULTS The results showed that transcriptional levels of CCL2/3/4/5/14/19/21/23 in BC patients were significantly reduced. A significant relation was observed between the expression of CCL2/11/14/18/19/21/23/24/26 and the pathological stage of BC patients. BC patients with high expression levels of CCL1, CCL2, CCL3, CCL4, CCL5, CCL8, CCL13, CCL15, CCL17, CCL18, CCL19, CCL22, CCL25, CCL27 were associated with a significantly better prognosis. Moreover, we found that differentially expressed CC chemokines are primarily correlated with cytokine activity, chemokines receptor binding, chemotaxis, immune cell migration. Further, there were significant correlations among the expression of CC chemokines and the infiltration of several types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). CONCLUSIONS This study is an analysis to the potential role of CC chemokines in the therapeutic targets and prognostic biomarkers of BC, which gives a novel insight into the relationship between CC chemokines and BC.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiong Chen
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Dongjie Li
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhiming Yang
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yao Bai
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Sheng Hu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhenyu Liu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jie Gu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | - XiaoBo Zhang
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Urolithiasis Institute of Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|