1
|
El-Marasy SA, Mostafa RE, Mabrok HB, Khattab MS, Awdan SAE. Protective effect of irbesartan against hepatic ischemia-reperfusion injury in rats: role of ERK, STAT3, and PPAR-γ inflammatory pathways in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1681-1693. [PMID: 39167169 PMCID: PMC11825560 DOI: 10.1007/s00210-024-03301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to elucidate the possible hepatocellular protective role of irbesartan during hepatic ischemia-reperfusion injury (HIRI) and the probable underlying mechanisms. Wistar rats were allocated into four groups: sham; HIRI (control); irbesartan (50 mg/kg) + HIRI; irbesartan (100 mg/kg) + HIRI; irbesartan + GW9662 (1 mg/kg, i.p.) + HIRI. Rats pretreated orally with irbesartan or vehicle for 14 days underwent 45-min hepatic ischemia followed by 60-min reperfusion. Irbesartan preconditioning diminished alanine transaminase (ALT) and aspartate transaminase (AST) serum levels, and reduced extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). Irbesartan decreased proapoptotic BAX (bcl-2-like protein 4), increased anti-apoptotic B-cell lymphoma 2 (BCL2) hepatic content, and thereby reduced BAX/BCL2 ratio. Moreover, irbesartan preconditioning reduced autophagy-related proteins Beclin1 and LC3 II, and elevated p62 (protein responsible for autophagosome degradation). It elevated proliferator-activated receptor γ (PPAR-γ), and reduced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) hepatic gene expression. Also, hepatic protein expressions of nuclear factor kappa-B p65 (NF-κB p65) and caspase-3 were lessoned by irbesartan pretreatment in HIRI rats. However, GW9662 abrogated irbesartan's effect on HIRI. The protective effect of irbesartan on HIRI may be mediated by alleviation of ERK, STAT3, and PPAR-γ inflammatory pathways, exerting anti-apoptotic and anti-autophagic effects in HIRI in rats.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Rasha E Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Ponticelli C, Reggiani F, Moroni G. Autophagy: A Silent Protagonist in Kidney Transplantation. Transplantation 2024; 108:1532-1541. [PMID: 37953477 DOI: 10.1097/tp.0000000000004862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Autophagy is a lysosome-dependent regulated mechanism that recycles unnecessary cytoplasmic components. It is now known that autophagy dysfunction may have a pathogenic role in several human diseases and conditions, including kidney transplantation. Both defective and excessive autophagy may induce or aggravate several complications of kidney transplantation, such as ischemia-reperfusion injury, alloimmune response, and immunosuppressive treatment and side effects. Although it is still complicated to measure autophagy levels in clinical practice, more attention should be paid to the factors that may influence autophagy. In kidney transplantation, the association of low doses of a mammalian target of rapamycin inhibitor with low doses of a calcineurin inhibitor may be of benefit for autophagy modulation. However, further studies are needed to explore the role of other autophagy regulators.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
Elmetwalli A, Abdel-Monem MO, El-Far AH, Ghaith GS, Albalawi NAN, Hassan J, Ismail NF, El-Sewedy T, Alnamshan MM, ALaqeel NK, Al-Dhuayan IS, Hassan MG. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med Oncol 2024; 41:106. [PMID: 38575697 PMCID: PMC10995097 DOI: 10.1007/s12032-024-02330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Gehad S Ghaith
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mashael Mashal Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf K ALaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ibtesam S Al-Dhuayan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|