1
|
Zhou X, Xiao L, Meng F, Zuo F, Wu W, Li G, Han F, Peng G, Shen H. GAS6-AS1 drives bladder cancer progression by increasing MMP7 expression in a ceRNA- and RBP-dependent manner. Transl Oncol 2024; 48:102065. [PMID: 39053343 PMCID: PMC11326496 DOI: 10.1016/j.tranon.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Numerous recent studies have underscored the indispensable roles of long non-coding RNAs (lncRNAs) in various diseases. However, their precise mechanisms in urinary bladder cancer (UBC) remain to be further elucidated. To delve into this inquiry, online databases were analyzed to identify differentially expressed lncRNAs in UBC, followed by the functional experiments in vivo and in vitro functional experiments. GAS6-AS1 exhibited high expression levels in UBC tissues and was shown to regulate the proliferation, migration, invasion, and cell cycle progression of UBC cells in vitro and in vivo. Then, a series of molecular biology experiments, including RNA pull-down, dual-luciferase reporter gene assays, RNA immunoprecipitation (RIP) assays, fluorescent in situ hybridization (FISH), and the triplex-capture assay demonstrated its interaction with miR-367-3p and PRC1. Mechanistically, GAS6-AS1 was found to enhance MMP7 expression by sequestering miR-367-3p. Moreover, GAS6-AS1 inhibited APC transcription by binding with PRC1, thereby activating several oncogenes downstream of the WNT pathway. To sum up, GAS6-AS1 promotes UBC progression through two distinct axes: the GAS6-AS1/miR-367-3p/MMP7 axis and the GAS6-AS1/PRC1/APC/Wnt/MMP7 axis, respectively. As a potential biomarker for UBC, GAS6-AS1 holds promising prospects for the diagnosis, treatment, and prognosis of UBC.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of General Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214000, China
| | - Linmei Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Fanyu Meng
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Fei Zuo
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Weili Wu
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Gongyu Li
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Fei Han
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Guohui Peng
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China.
| | - Hua Shen
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China.
| |
Collapse
|
2
|
Liu S, Han B, Wang R, Fang J. Elucidating the role of FOS in modulating the immune microenvironment through fibroblast and myeloid cell regulation in locoregional recurrent HNSCC. ENVIRONMENTAL TOXICOLOGY 2024; 39:4531-4546. [PMID: 38567514 DOI: 10.1002/tox.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) presents a significant clinical challenge, particularly due to its high propensity for locoregional recurrence. Current research underscores the need to unravel the complex interactions within the tumor microenvironment. This study addresses the critical gap in understanding how FOS modulates the immune landscape in HNSCC, with a focus on its influence on fibroblast and myeloid cell dynamics. METHODS Employing a comprehensive approach, we analyzed tissue samples from HNSCC patients and adjacent non-cancerous tissues using bulk RNA sequencing complemented by in-depth bioinformatics analyses, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and immune infiltration assessment. A pivotal aspect of our research involved dissecting single-cell RNA-seq data from GSE234933 to elucidate the cell-type-specific expression of FOS. RESULTS We found that FOS expression varies significantly in different cell populations in the HNSCC tumor microenvironment, especially in fibroblasts and myeloid cells. This expression difference may reflect the different roles of these cells in tumor progression and their impact on the tumor microenvironment. CONCLUSION Our results uncover a significant correlation between FOS expression and key immune and hypoxia-related pathways, suggesting its integral role in the tumor microenvironment. These findings not only enhance our understanding of HNSCC pathogenesis but also highlight FOS as a potential therapeutic target. This study marks a significant step towards addressing the urgent need for targeted interventions in HNSCC, particularly in the context of locoregional recurrence.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Campolo M, Scuderi SA, Filippone A, Bova V, Lombardo SP, Colarossi L, Sava S, Capra AP, De Gaetano F, Portelli M, Militi A, Esposito E, Paterniti I. EZH2 Inhibition to Counteract Oral Cancer Progression through Wnt/β-Catenin Pathway Modulation. Pharmaceuticals (Basel) 2024; 17:1102. [PMID: 39204206 PMCID: PMC11357505 DOI: 10.3390/ph17081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies worldwide. The molecular mechanisms of OSCC pathogenesis are still unknown; however, in recent years, several reports have focused on the role of enhancer of zeste homolog 2 (EZH2) in OSCC. Therefore, in this study we aimed to investigate the effects of GSK343, a selective EZH2 inhibitor, and its impact on the signaling pathways in OSCC, using an in vitro and in vivo orthotopic model. In the in vitro model, GSK343 (1, 10, and 25 μM) significantly decreased OSCC cell viability and cell migration through EZH2 inhibition, modulating NF-κB/IκBα pathway activation and eNOS, VEGF, and TGFβ expression, important markers of angiogenesis. In the in vivo model, GSK343 (5 mg/kg and 10 mg/kg) restored tongue tissue architecture and reduced tumor progression through EZH2 inhibition and Wnt/β-catenin signaling pathway modulation. Moreover, GSK343 reduced the expression of inflammatory mediators; eNOS and TGFβ, markers of angiogenesis; and CD31 and CD34, markers of micro vessel density, respectively. In conclusion, our data demonstrate that GSK343 counteracts oral cancer progression through EZH2/Wnt/β-catenin pathway modulation, suggesting that it could be a promising therapeutic approach for OSCC management.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Angela Militi
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| |
Collapse
|
5
|
Zhang X, Sun K, Gan R, Yan Y, Zhang C, Zheng D, Lu Y. WNT3 promotes chemoresistance to 5-Fluorouracil in oral squamous cell carcinoma via activating the canonical β-catenin pathway. BMC Cancer 2024; 24:564. [PMID: 38711026 PMCID: PMC11071218 DOI: 10.1186/s12885-024-12318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS In this study, the WNT/β-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS These data underscored the activation of the WNT/β-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.
Collapse
Affiliation(s)
- Xuyang Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Kairui Sun
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Ruihuan Gan
- Department of Preventive Dentistry, Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yuxiang Yan
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Chaochao Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Dali Zheng
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China.
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China.
| | - Youguang Lu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China.
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China.
- Department of Preventive Dentistry, Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Landman N, Hulsman D, Badhai J, Kopparam J, Puppe J, Pandey GK, van Lohuizen M. Combination of EZH2 and ATM inhibition in BAP1-deficient mesothelioma. Br J Cancer 2024; 130:1855-1865. [PMID: 38519707 PMCID: PMC11130181 DOI: 10.1038/s41416-024-02661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial. Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time. METHODS A focused drug synergy screen consisting of 20 drugs was performed by combining EZH2 inhibition with a panel of anti-cancer compounds in mesothelioma cell lines. The compounds used are under preclinical investigation or already used in the clinic. The synergistic potential of the combinations was assessed by using the Bliss model. To validate our findings, in vivo xenograft experiments were performed. RESULTS Combining EZH2i with ATMi was found to have synergistic potential against BAP1-deficient mesothelioma in our drug screen, which was validated in clonogenicity assays. Tumour growth inhibition potential was significantly increased in BAP1-deficient xenografts. In addition, we observe lower ATM levels upon depletion of BAP1 and hypothesise that this might be mediated by E2F1. CONCLUSIONS We demonstrated the efficacy of the combination of ATM and EZH2 inhibition against BAP1-deficient mesothelioma in preclinical models, indicating the potential of this combination as a novel treatment modality using BAP1 as a biomarker.
Collapse
Affiliation(s)
- Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jawahar Kopparam
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Julian Puppe
- Department of Obstetrics and Gynaecology, University Hospital of Cologne, Kerpener Str. 34, Cologne, Germany
| | - Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Cheng Y, Song Z, Fang X, Tang Z. Polycomb repressive complex 2 and its core component EZH2: potential targeted therapeutic strategies for head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:54. [PMID: 38600608 PMCID: PMC11007890 DOI: 10.1186/s13148-024-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Dorna D, Paluszczak J. Targeting cancer stem cells as a strategy for reducing chemotherapy resistance in head and neck cancers. J Cancer Res Clin Oncol 2023; 149:13417-13435. [PMID: 37453969 PMCID: PMC10587253 DOI: 10.1007/s00432-023-05136-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, including alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies. METHODS This narrative review was prepared based on the search of the PubMed database for relevant papers. RESULTS Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of certain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for chemoresistance induction. CONCLUSIONS Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| |
Collapse
|