1
|
Chong ZX, Ho WY, Yeap SK. Deciphering the roles of non-coding RNAs in liposarcoma development: Challenges and opportunities for translational therapeutic advances. Noncoding RNA Res 2025; 11:73-90. [PMID: 39736850 PMCID: PMC11683247 DOI: 10.1016/j.ncrna.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Liposarcoma is one of the most prevalent forms of soft tissue sarcoma, and its prognosis is highly dependent on its molecular subtypes. Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can bind various cellular targets to regulate carcinogenesis. By affecting the expressions and activities of their downstream targets post-transcriptionally, dysregulations of miRNAs can alter different oncogenic signalling pathways, mediating liposarcoma progression. On the contrary, lncRNAs can sponge miRNAs to spare their downstream targets from translational repression, indirectly affecting miRNA-regulated oncogenic activities. In the past 15 years, multiple fundamental and clinical research has shown that different ncRNAs play essential roles in modulating liposarcoma development. Yet, there is a lack of an effective review report that could summarize the findings from various studies. To narrow this literature gap, this review article aimed to compare the findings from different studies on the tumour-regulatory roles of ncRNAs in liposarcoma and to understand how ncRNAs control liposarcoma progression mechanistically. Additionally, the reported findings were critically reviewed to evaluate the translational potentials of various ncRNAs in clinical applications, including employing these ncRNAs as diagnostic and prognostic biomarkers or as therapeutic targets in the management of liposarcoma. Overall, over 15 ncRNAs were reported to play essential roles in modulating different cellular pathways, including apoptosis, WNT/β-catenin, TGF-β/SMAD4, EMT, interleukin, and YAP-associated pathways to influence liposarcoma development. 28 ncRNAs were reported to be upregulated in liposarcoma tissues or circulation, whereas 11 were downregulated, making them potential candidates as liposarcoma diagnostic biomarkers. Among these ncRNAs, measuring the tissues or circulating levels of miR-155 and miR-195 was reported to help detect liposarcoma, differentiate liposarcoma subtypes, and predict the survival and treatment response of liposarcoma patients. Overall, except for a few ncRNAs like miR-155 and miR-195, current evidence to support the use of discussed ncRNAs as biomarkers and therapeutic targets in managing liposarcoma is mainly based on a single-center study with relatively small sample sizes or cell-based studies. Hence, more large-scale multi-center studies should be conducted to further confirm the sensitivity, specificity, and safety of ncRNAs as biomarkers and therapeutic targets. Instead of furthering investigation to confirm the translational values of all the discussed ncRNAs, which can be time- and cost-consuming, it would be more practical to focus on a few ncRNAs, including miR-155 and miR-195, to evaluate if they are sensitive and safe to be used as liposarcoma biomarkers and therapeutic agents or targets.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| |
Collapse
|
2
|
Liu H, Liu X, Lu Y. The roles of LncRNA CARMN in cancers: biomarker potential, therapeutic targeting, and immune response. Discov Oncol 2024; 15:776. [PMID: 39692999 DOI: 10.1007/s12672-024-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are crucial regulators of gene expression and cellular processes, with significant implications for cancer research. This review focuses on the role of LncRNA CARMN (Cardiac Arrest and Regulated Myocyte Nuclear Protein) in various cancers. CARMN, originally identified for its function in cardiac tissues, has shown dysregulated expression in several tumor types, including cervical, breast, colorectal, and esophageal cancers. Its altered expression often correlates with tumor progression, metastasis, and patient prognosis, suggesting its potential as both a biomarker and therapeutic target. In cervical cancer, CARMN's role as a tumor suppressor is highlighted by its ability to inhibit cell proliferation, migration, and invasion through interaction with the miR-92a-3p/BTG2 axis and modulation of the Wnt/β-catenin signaling pathway. In breast cancer, CARMN acts as an enhancer RNA, affecting epithelial-mesenchymal transition and metastasis by regulating MMP2 via DHX9. The downregulation of CARMN in triple-negative breast cancer is associated with enhanced sensitivity to chemotherapy. In colorectal cancer, CARMN's expression is regulated by m6A methylation and mutant p53, influencing tumor growth through miR-5683 and FGF2. Lastly, in esophageal cancer, genetic variations in CARMN affect cancer susceptibility, with certain SNPs and haplotypes associated with either increased or decreased risk. Additionally, the relationship between CARMN and immune cell dynamics highlights its potential role in cancer immune surveillance and therapy. Finally, we found that CARMN may regulate immune cell exhaustion in the tumor microenvironment by influencing the recruitment and activation of NK cells and T cells, as well as modulating macrophage polarization. This review emphasizes the diverse roles of CARMN across different cancers and its potential as a diagnostic and therapeutic tool. Future research should address the mechanistic details of CARMN's involvement in cancer, validate its clinical utility, and explore its therapeutic potential in combination with existing treatments.
Collapse
Affiliation(s)
- Huafeng Liu
- Department of Oncology, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou, China.
| | - Xuewen Liu
- Department of Oncology, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou, China
| | - Yanjun Lu
- Department of Oncology, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou, China
| |
Collapse
|
3
|
Liu Y, Li K, Gao Y, Feng Y, Zhao X, Hou R. lncRNA WAC-AS1 promotes the progression of gastric cancer through miR-204-5p/HOXC8 axis. Transl Oncol 2024; 50:102139. [PMID: 39395273 PMCID: PMC11736402 DOI: 10.1016/j.tranon.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024] Open
Abstract
LncRNAs affect tumorigenesis, and although the genesis, regulation and physiological mechanism of lncRNAs in gastric cancer (GC) have been reported, the research of lncRNAs still have a lot of value. Through comprehensive bioinformatics analysis, we screened the candidate lncRNA WAC-AS1(WAC-AS1). We analyzed WAC-AS1 expression in GC related tissues and cells using qRT-PCR. WAC-AS1's impact on GC growth and metastasis was investigated. LncRNA WC-AS-miR-204-5p-HOXC8 interaction was established through dual-luciferase reporter, FISH, RIP and RNA pull-down assay. We observed substantial upregulation in WAC-AS1 expression in cells and tissues of GC. WAC-AS1 through miR-204-5p/HOXC8 axis promoted GC proliferation, invasion, and migration. WAC-AS1 plays a cancer-promoting role for promoting the progression of GC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ultrasonography, the third Norman Bethune Hospital of Jilin university, Changchun, Jilin, China
| | - Kaixuan Li
- Department of Gastrointestinal surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Yongjian Gao
- Department of Gastrointestinal and Colonretal Surgery, the third Norman Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Ye Feng
- Department of Gastrointestinal and Colonretal Surgery, the third Norman Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoling Zhao
- Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Hebei Key Laboratory of Infectious Disease Pathogenesis and Precise Diagnosis and Treatment, Baoding, Hebei, China.
| | - Ruizhi Hou
- Department of Gastrointestinal and Colonretal Surgery, the third Norman Bethune Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Li H, Sun C, Luo B, Zhan C, Li W, Deng L, Kang K, Gou D. Exploring the Spectrum of Long Non-Coding RNA CARMN in Physiological and Pathological Contexts. Biomolecules 2024; 14:954. [PMID: 39199342 PMCID: PMC11353180 DOI: 10.3390/biom14080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiac mesoderm enhancer-associated non-coding RNA (CARMN), an evolutionarily conserved long non-coding RNA (lncRNA), serves as the host gene for the miR143/145 cluster. It plays a crucial role in cardiovascular cell differentiation and the maintenance of vascular smooth muscle cell (VSMC) homeostasis, which are vital for normal physiological processes. Specifically, CARMN is associated with the pathological progression of cardiovascular diseases such as atherosclerosis, abdominal aortic aneurysm, and chronic heart failure. Moreover, it acts as a tumor suppressor in various cancers, including hepatocellular carcinoma, bladder cancer, and breast cancer, highlighting its potential as a beneficial biomarker and therapeutic target. This review provides a detailed examination of the roles of CARMN, its evolutionary conservation, expression patterns, and regulatory mechanisms. It also outlines its significant implications in the diagnosis, prognosis, and treatment of these diseases, underscoring the need for further translational research to exploit its clinical potential.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Chuannan Sun
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Bin Luo
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Chuzhi Zhan
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Weitao Li
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Lu Deng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China; (H.L.); (C.S.); (B.L.); (C.Z.); (W.L.)
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
5
|
Yu LH, Zhang GL. Modulating the Expression of Exercise-induced lncRNAs: Implications for Cardiovascular Disease Progression. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10530-w. [PMID: 38858339 DOI: 10.1007/s12265-024-10530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Recent research shows exercise is good for heart health, emphasizing the importance of physical activity. Sedentary behavior increases the risk of cardiovascular disease, while exercise can help prevent and treat it. Additionally, physical exercise can modulate the expression of lncRNAs, influencing cardiovascular disease progression. Therefore, understanding this relationship could help identify prospective biomarkers and therapeutic targets pertaining to cardiovascular ailments. This review has underscored recent advancements concerning the potential biomarkers of lncRNAs in cardiovascular diseases, while also summarizing existing knowledge regarding dysregulated lncRNAs and their plausible molecular mechanisms. Additionally, we have contributed novel perspectives on the underlying mechanisms of lncRNAs, which hold promise as potential biomarkers and therapeutic targets for cardiovascular conditions. The knowledge imparted in this review may prove valuable in guiding the design of future investigations and furthering the understanding of lncRNAs as diagnostic, prognostic, and therapeutic biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Hua Yu
- College of Arts and Sports, Hanyang University, Olympic Gym, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, South Korea.
- Changsha University of Science and Technology, No. 960, Section 2, Wanjiali South Road, Tianxin District, Changsha City, Hunan Province, China.
| | - Ge-Lin Zhang
- College of Arts and Sports, Hanyang University, Olympic Gym, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, South Korea
- Changsha University of Science and Technology, No. 960, Section 2, Wanjiali South Road, Tianxin District, Changsha City, Hunan Province, China
| |
Collapse
|
6
|
Liang Y, Chen B, Xu F, Long L, Ye F, Wang Y, Luo D, Li Y, Zhao W, Wang L, Jin Y, Wang L, Kong X, Su P, Yang Q. LncRNA PRBC induces autophagy to promote breast cancer progression through modulating PABPC1-mediated mRNA stabilization. Oncogene 2024; 43:1019-1032. [PMID: 38366145 DOI: 10.1038/s41388-024-02971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Breast cancer is one of the major malignant tumors among women worldwide. Long noncoding RNAs (lncRNAs) have been documented as significant modulators in the development and progression of various cancers; however, the contribution of lncRNAs to breast cancer remains largely unknown. In this study, we found a novel lncRNA (NONHSAT137675) whose expression was significantly increased in the breast cancer tissues. We named the novel lncRNA as lncRNA PRBC (PABPC1-related lncRNA in breast cancer) and identified it as a key lncRNA associated with breast cancer progression and prognosis. Functional analysis displayed that lncRNA PRBC could promote autophagy and progression of breast cancer. Mechanistically, we verified that lncRNA PRBC physically interacted with PABPC1 through RIP assay, and PABPC1 overexpression could reverse the inhibiting effect of lncRNA PRBC knockdown on the malignant behaviors in breast cancer cells. Knockdown of lncRNA PRBC interfered the translocation of PABPC1 from nucleus to cytoplasm as indicated by western blot and IF assays. Significantly, the cytoplasmic location of PABPC1 was required for the interaction between PABPC1 and AGO2, which could be enhanced by lncRNA PRBC overexpression, leading to strengthened recruitment of mRNA to RNA-induced silencing complex (RISC) and thus reinforcing the inhibition efficiency of miRNAs. In general, lncRNA PRBC played a critical role in malignant progression of breast cancer by inducing the cytoplasmic translocation of PABPC1 to further regulate the function of downstream miRNAs. This study provides novel insight on the molecular mechanism of breast cancer progression, and lncRNA PRBC might be a promising therapeutic target and prognostic predictor for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Fanchao Xu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Li Long
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Breast Surgery, Mianyang Central Hospital, Mianyang, Sichuan, 621000, P.R. China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Lei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Xiaoli Kong
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|