1
|
Kochman R, Ba I, Yates M, Pirabakaran V, Gourmelon F, Churikov D, Laffaille M, Kermasson L, Hamelin C, Marois I, Jourquin F, Braud L, Bechara M, Lainey E, Nunes H, Breton P, Penhouet M, David P, Géli V, Lachaud C, Maréchal A, Revy P, Kannengiesser C, Saintomé C, Coulon S. Heterozygous RPA2 variant as a novel genetic cause of telomere biology disorders. Genes Dev 2024; 38:755-771. [PMID: 39231615 PMCID: PMC11444173 DOI: 10.1101/gad.352032.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Premature telomere shortening or telomere instability is associated with a group of rare and heterogeneous diseases collectively known as telomere biology disorders (TBDs). Here we identified two unrelated individuals with clinical manifestations of TBDs and short telomeres associated with the identical monoallelic variant c.767A>G; Y256C in RPA2 Although the replication protein A2 (RPA2) mutant did not affect ssDNA binding and G-quadruplex-unfolding properties of RPA, the mutation reduced the affinity of RPA2 with the ubiquitin ligase RFWD3 and reduced RPA ubiquitination. Using engineered knock-in cell lines, we found an accumulation of RPA at telomeres that did not trigger ATR activation but caused short and dysfunctional telomeres. Finally, both patients acquired, in a subset of blood cells, somatic genetic rescue events in either POT1 genes or TERT promoters known to counteract the accelerated telomere shortening. Collectively, our study indicates that variants in RPA2 represent a novel genetic cause of TBDs. Our results further support the fundamental role of the RPA complex in regulating telomere length and stability in humans.
Collapse
Affiliation(s)
- Rima Kochman
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Ibrahima Ba
- U1152 INSERM, Department of Genetics, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Vithura Pirabakaran
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Florian Gourmelon
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Dmitri Churikov
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Marc Laffaille
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Laëtitia Kermasson
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Coline Hamelin
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Isabelle Marois
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Frédéric Jourquin
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Laura Braud
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Marianne Bechara
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Elodie Lainey
- Assistance Publique Hôpitaux de Paris, Service d'Hématologie, Hôpital Robert Debré, Groupe Hospitalier Universitaire (GHU) AP-HP Nord, Université Paris Cité, F-75019 Paris, France
| | - Hilario Nunes
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Avicenne, F-93000 Bobigny, France
| | - Philippe Breton
- Centre Hospitalier Universitaire (CHU) Les Sables d'Olonne, Pôle santé Service Pneumologie, 85340 Olonne, France
| | - Morgane Penhouet
- CHU Nantes, Hôpital Nord Laënnec Service de Pneumologie, Unité de Transplantation Thoracique, F-44093 Nantes, France
| | - Pierre David
- UMR1163 INSERM, Imagine Institute, Université de Paris, Transgenesis Facility, F-75015 Paris, France
| | - Vincent Géli
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Christophe Lachaud
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Patrick Revy
- UMR1163 INSERM, Genome Dynamics in the Immune System Laboratory, Laboratoire labellisé Ligue 2023, Imagine Institute, Paris Cité University, F-75015 Paris, France
| | - Caroline Kannengiesser
- U1152 INSERM, Department of Genetics, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Carole Saintomé
- UMR7196 CNRS, U1154 INSERM, Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, F-75005 Paris, France
- UFR927, Sorbonne Université, F-75005 Paris, France
| | - Stéphane Coulon
- UMR7258 Centre National de la Recherche Scientifique (CNRS), UMR1068 Institut National de la Santé et de la Recherche Médicale (INSERM), UM105 Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Laboratoire Labellisée par la Ligue Nationale Contre le Cancer, F-13009 Marseille, France;
| |
Collapse
|
2
|
Martin A, Schabort J, Bartke-Croughan R, Tran S, Preetham A, Lu R, Ho R, Gao J, Jenkins S, Boyle J, Ghanim GE, Jagota M, Song YS, Li H, Hockemeyer D. Dissecting the oncogenic mechanisms of POT1 cancer mutations through deep scanning mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608636. [PMID: 39229243 PMCID: PMC11370387 DOI: 10.1101/2024.08.19.608636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in the shelterin protein POT1 are associated with diverse cancers, but their role in cancer progression remains unclear. To resolve this, we performed deep scanning mutagenesis in POT1 locally haploid human stem cells to assess the impact of POT1 variants on cellular viability and cancer-associated telomeric phenotypes. Though POT1 is essential, frame-shift mutants are rescued by chemical ATR inhibition, indicating that POT1 is not required for telomere replication or lagging strand synthesis. In contrast, a substantial fraction of clinically-validated pathogenic mutations support normal cellular proliferation, but still drive ATR-dependent telomeric DNA damage signaling and ATR-independent telomere elongation. Moreover, this class of cancer-associated POT1 variants elongates telomeres more rapidly than POT1 frame-shifts, indicating they actively drive oncogenesis and are not simple loss-of-function mutations.
Collapse
|
3
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
4
|
Cai SW, Takai H, Zaug AJ, Dilgen TC, Cech TR, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024; 187:3638-3651.e18. [PMID: 38838667 PMCID: PMC11246235 DOI: 10.1016/j.cell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teague C Dilgen
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Khattar E, Salvati E. Editorial: Novel insights connecting telomere biology to cancer development and progression. Front Oncol 2024; 14:1405618. [PMID: 38690161 PMCID: PMC11059067 DOI: 10.3389/fonc.2024.1405618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be) University, Mumbai, India
| | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
6
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
7
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-polymerase α-primase solves a second telomere end-replication problem. Nature 2024; 627:664-670. [PMID: 38418884 PMCID: PMC11160940 DOI: 10.1038/s41586-024-07137-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joseph T P Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Olson CL, Wuttke DS. Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication. Biomolecules 2024; 14:263. [PMID: 38540683 PMCID: PMC10968030 DOI: 10.3390/biom14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024] Open
Abstract
Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.
Collapse
Affiliation(s)
- Conner L. Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
10
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-Polymeraseα-primase solves a second telomere end-replication problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564248. [PMID: 37961611 PMCID: PMC10634868 DOI: 10.1101/2023.10.26.564248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ("the end-replication problem"2). We report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand by lagging-strand synthesis. This problem is solved by CST-Polymeraseα(Polα)-primase fill-in synthesis. In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in an ~150-nt zone more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost ~50-60 nt of CCCTAA repeats per population doubling (PD). The C-strands of leading-end telomeres shortened by ~100 nt/PD, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading-ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Joseph T. P. Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
11
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
12
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Dunn PL, Logeswaran D, Chen JJL. Telomerase-Mediated Anti-Ageing Interventions. Subcell Biochem 2024; 107:1-20. [PMID: 39693017 DOI: 10.1007/978-3-031-66768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans. Telomeres shorten progressively with each round of DNA replication due to the inability of conventional DNA polymerase to completely replicate the chromosome ends, known as the "end-replication problem". The telomerase enzyme counteracts the telomeric DNA loss by de novo addition of telomeric repeats onto chromosomal ends. Germline and stem cells maintain significant levels of telomerase activity to maintain telomere length and can divide almost indefinitely. However, the differentiation of stem cells accompanies the inactivation of telomerase gene expression, resulting in the progressive shortening of telomeres in somatic cells over successive divisions. Critically short telomeres elicit and sustain a persistent DNA damage response leading to permanent growth arrest of cells known as cellular senescence, a hallmark of cellular ageing. The accumulation of senescent cells in tissues and organs contributes to organismal ageing. Thus, the prevention of telomere shortening is a promising means to delay or even reverse cellular ageing. In this chapter, we summarize potential anti-ageing interventions that mitigate telomere shortening through increasing telomerase level or activity and discuss these strategies' risks, benefits, and future outlooks.
Collapse
Affiliation(s)
- Phoebe L Dunn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
14
|
Carvalho Borges PC, Bouabboune C, Escandell JM, Matmati S, Coulon S, Ferreira MG. Pot1 promotes telomere DNA replication via the Stn1-Ten1 complex in fission yeast. Nucleic Acids Res 2023; 51:12325-12336. [PMID: 37953281 PMCID: PMC10711446 DOI: 10.1093/nar/gkad1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Telomeres are nucleoprotein complexes that protect the chromosome-ends from eliciting DNA repair while ensuring their complete duplication. Pot1 is a subunit of telomere capping complex that binds to the G-rich overhang and inhibits the activation of DNA damage checkpoints. In this study, we explore new functions of fission yeast Pot1 by using a pot1-1 temperature sensitive mutant. We show that pot1 inactivation impairs telomere DNA replication resulting in the accumulation of ssDNA leading to the complete loss of telomeric DNA. Recruitment of Stn1 to telomeres, an auxiliary factor of DNA lagging strand synthesis, is reduced in pot1-1 mutants and overexpression of Stn1 rescues loss of telomeres and cell viability at restrictive temperature. We propose that Pot1 plays a crucial function in telomere DNA replication by recruiting Stn1-Ten1 and Polα-primase complex to telomeres via Tpz1, thus promoting lagging-strand DNA synthesis at stalled replication forks.
Collapse
Affiliation(s)
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | | | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, 2781-901, Portugal
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, 06107 Nice, France
| |
Collapse
|
15
|
Liu L, Luo H, Sheng Y, Kang X, Peng H, Luo H, Fan LL. A novel mutation of CTC1 leads to telomere shortening in a chinese family with interstitial lung disease. Hereditas 2023; 160:37. [PMID: 37978541 PMCID: PMC10656953 DOI: 10.1186/s41065-023-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.
Collapse
Affiliation(s)
- Lv Liu
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
- Department of Cell biology, School of Life Science, Central South University, Changsha, China
| | - Hua Luo
- Department of Cardio-Thoracic Surgery, Changsha Medical School, the Affiliated Changsha Central Hospital, University of South China, Changsha, China
| | - Yue Sheng
- Department of Cell biology, School of Life Science, Central South University, Changsha, China
| | - Xi Kang
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liang-Liang Fan
- Department of Cell biology, School of Life Science, Central South University, Changsha, China.
| |
Collapse
|
16
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal Telomeres Derived from Excessive Strand Displacements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551186. [PMID: 37577643 PMCID: PMC10418088 DOI: 10.1101/2023.07.31.551186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication (BIR), evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), unique to ALT cells, are considered potential precursors of C-circles, their generation process remains undefined. Here, we introduce a highly sensitive method to detect single stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear C-rich ssDNA accumulation may indeed precede C-circle formation. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a new model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
17
|
Li T, Zhang M, Li Y, Han X, Tang L, Ma T, Zhao X, Zhao R, Wang Y, Bai X, Zhang K, Geng X, Sui L, Feng X, Zhang Q, Zhao Y, Liu Y, Stewart JA, Wang F. Cooperative interaction of CST and RECQ4 resolves G-quadruplexes and maintains telomere stability. EMBO Rep 2023; 24:e55494. [PMID: 37493024 PMCID: PMC10481657 DOI: 10.15252/embr.202255494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that interacts with the replisome to aid in stalled fork rescue. We previously found that CST promotes telomere replication to maintain genomic integrity via G-quadruplex (G4) resolution. However, the detailed mechanism by which CST resolves G4s in vivo and whether additional factors are involved remains unclear. Here, we identify RECQ4 as a novel CST-interacting partner and show that RECQ4 can unwind G4 structures in vitro using a FRET assay. Moreover, G4s accumulate at the telomere after RECQ4 depletion, resulting in telomere dysfunction, including the formation of MTSs, SFEs, and TIFs, suggesting that RECQ4 is crucial for telomere integrity. Furthermore, CST is also required for RECQ4 telomere or chromatin localization in response to G4 stabilizers. RECQ4 is involved in preserving genomic stability by CST and RECQ4 disruption impairs restart of replication forks stalled by G4s. Overall, our findings highlight the essential roles of CST and RECQ4 in resolving G-rich regions, where they collaborate to resolve G4-induced replication deficiencies and maintain genomic homeostasis.
Collapse
Affiliation(s)
- Tingfang Li
- Department of Genetics, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Geriatrics Institute General Hospital, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Miaomiao Zhang
- Medical Research CenterAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Yanjing Li
- Department of Prosthodontics, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xinyu Han
- Department of Genetics, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Geriatrics Institute General Hospital, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Lu Tang
- Department of Prosthodontics, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Tengfei Ma
- Institute of Precision MedicineThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaotong Zhao
- Department of Radiobiology, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Rui Zhao
- Department of Genetics, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Geriatrics Institute General Hospital, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Yuwen Wang
- Department of Genetics, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Geriatrics Institute General Hospital, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xuyang Feng
- Institute of Precision MedicineThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General HospitalTianjin Geriatrics InstituteTianjinChina
| | - Yang Zhao
- Department of Radiology, Tianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jason A Stewart
- Department of BiologyWestern Kentucky UniversityBowling GreenKYUSA
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Geriatrics Institute General Hospital, School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
18
|
Hara T, Nakaoka H, Miyoshi T, Ishikawa F. The CST complex facilitates cell survival under oxidative genotoxic stress. PLoS One 2023; 18:e0289304. [PMID: 37590191 PMCID: PMC10434909 DOI: 10.1371/journal.pone.0289304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Genomic DNA is constantly exposed to a variety of genotoxic stresses, and it is crucial for organisms to be equipped with mechanisms for repairing the damaged genome. Previously, it was demonstrated that the mammalian CST (CTC1-STN1-TEN1) complex, which was originally identified as a single-stranded DNA-binding trimeric protein complex essential for telomere maintenance, is required for survival in response to hydroxyurea (HU), which induces DNA replication fork stalling. It is still unclear, however, how the CST complex is involved in the repair of diverse types of DNA damage induced by oxidizing agents such as H2O2. STN1 knockdown (KD) sensitized HeLa cells to high doses of H2O2. While H2O2 induced DNA strand breaks throughout the cell cycle, STN1 KD cells were as resistant as control cells to H2O2 treatment when challenged in the G1 phase of the cell cycle, but they were sensitive when exposed to H2O2 in S/G2/M phase. STN1 KD cells showed a failure of DNA synthesis and RAD51 foci formation upon H2O2 treatment. Chemical inhibition of RAD51 in shSTN1 cells did not exacerbate the sensitivity to H2O2, implying that the CST complex and RAD51 act in the same pathway. Collectively, our results suggest that the CST complex is required for maintaining genomic stability in response to oxidative DNA damage, possibly through RAD51-dependent DNA repair/protection mechanisms.
Collapse
Affiliation(s)
- Tomohiko Hara
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hidenori Nakaoka
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoicihiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Abstract
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
20
|
Vaurs M, Naiman K, Bouabboune C, Rai S, Ptasińska K, Rives M, Matmati S, Carr AM, Géli V, Coulon S. Stn1-Ten1 and Taz1 independently promote replication of subtelomeric fragile sequences in fission yeast. Cell Rep 2023; 42:112537. [PMID: 37243596 DOI: 10.1016/j.celrep.2023.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Efficient replication of terminal DNA is crucial to maintain telomere stability. In fission yeast, Taz1 and the Stn1-Ten1 (ST) complex play prominent roles in DNA-ends replication. However, their function remains elusive. Here, we have analyzed genome-wide replication and show that ST does not affect genome-wide replication but is crucial for the efficient replication of a subtelomeric region called STE3-2. We further show that, when ST function is compromised, a homologous recombination (HR)-based fork restart mechanism becomes necessary for STE3-2 stability. While both Taz1 and Stn1 bind to STE3-2, we find that the STE3-2 replication function of ST is independent of Taz1 but relies on its association with the shelterin proteins Pot1-Tpz1-Poz1. Finally, we demonstrate that the firing of an origin normally inhibited by Rif1 can circumvent the replication defect of subtelomeres when ST function is compromised. Our results help illuminate why fission yeast telomeres are terminal fragile sites.
Collapse
Affiliation(s)
- Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Karel Naiman
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Sudhir Rai
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Katarzyna Ptasińska
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Marion Rives
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| |
Collapse
|
21
|
Wang H, Ma T, Zhang X, Chen W, Lan Y, Kuang G, Hsu SJ, He Z, Chen Y, Stewart J, Bhattacharjee A, Luo Z, Price C, Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res 2023; 51:4914-4928. [PMID: 37021555 PMCID: PMC10250220 DOI: 10.1093/nar/gkad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a telomere associated complex that binds ssDNA and is required for multiple steps in telomere replication, including termination of G-strand extension by telomerase and synthesis of the complementary C-strand. CST contains seven OB-folds which appear to mediate CST function by modulating CST binding to ssDNA and the ability of CST to recruit or engage partner proteins. However, the mechanism whereby CST achieves its various functions remains unclear. To address the mechanism, we generated a series of CTC1 mutants and studied their effect on CST binding to ssDNA and their ability to rescue CST function in CTC1-/- cells. We identified the OB-B domain as a key determinant of telomerase termination but not C-strand synthesis. CTC1-ΔB expression rescued C-strand fill-in, prevented telomeric DNA damage signaling and growth arrest. However, it caused progressive telomere elongation and the accumulation of telomerase at telomeres, indicating an inability to limit telomerase action. The CTC1-ΔB mutation greatly reduced CST-TPP1 interaction but only modestly affected ssDNA binding. OB-B point mutations also weakened TPP1 association, with the deficiency in TPP1 interaction tracking with an inability to limit telomerase action. Overall, our results indicate that CTC1-TPP1 interaction plays a key role in telomerase termination.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tengfei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Lan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guotao Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shih-Jui Hsu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Zhenhua Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Carolyn Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Xuyang Feng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Olson CL, Barbour AT, Wieser TA, Wuttke DS. RPA engages telomeric G-quadruplexes more effectively than CST. Nucleic Acids Res 2023; 51:5073-5086. [PMID: 37140062 PMCID: PMC10250233 DOI: 10.1093/nar/gkad315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
G-quadruplexes (G4s) are a set of stable secondary structures that form within guanine-rich regions of single-stranded nucleic acids that pose challenges for DNA maintenance. The G-rich DNA sequence at telomeres has a propensity to form G4s of various topologies. The human protein complexes Replication Protein A (RPA) and CTC1-STN1-TEN1 (CST) are implicated in managing G4s at telomeres, leading to DNA unfolding and allowing telomere replication to proceed. Here, we use fluorescence anisotropy equilibrium binding measurements to determine the ability of these proteins to bind various telomeric G4s. We find that the ability of CST to specifically bind G-rich ssDNA is substantially inhibited by the presence of G4s. In contrast, RPA tightly binds telomeric G4s, showing negligible changes in affinity for G4 structure compared to linear ssDNAs. Using a mutagenesis strategy, we found that RPA DNA-binding domains work together for G4 binding, and simultaneous disruption of these domains reduces the affinity of RPA for G4 ssDNA. The relative inability of CST to disrupt G4s, combined with the greater cellular abundance of RPA, suggests that RPA could act as a primary protein complex responsible for resolving G4s at telomeres.
Collapse
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| |
Collapse
|
23
|
Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol 2023; 238:1237-1255. [PMID: 37183325 DOI: 10.1002/jcp.31034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The protection of telomere protein (POT1) is a telomere-binding protein and is an essential component of the six-membered shelterin complex, which is associated with the telomeres. POT1 directly binds to the 3' single-stranded telomeric overhang and prevents the activation of DNA damage response at telomeres thus preventing the telomere-telomere fusions and genomic instability. POT1 also plays a pivotal role in maintaining telomere length by regulating telomerase-mediated telomere elongation. Mutations in POT1 proteins result in three different telomere phenotypes, which include long, short, or aberrant telomere length. Long telomeres predispose individuals to cancer, while short or aberrant telomere phenotypes result in pro-aging diseases referred to as telomeropathies. Here, we review the function of POT1 proteins in telomere length hemostasis and how the spectrum of mutations reported in POT1 can be segregated toward developing very distinct disease phenotypes of cancer and telomeropathies.
Collapse
Affiliation(s)
- Nikita Harish Zade
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
24
|
Nguyen DD, Kim E, Le NT, Ding X, Jaiswal RK, Kostlan RJ, Nguyen TNT, Shiva O, Le MT, Chai W. Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair. SCIENCE ADVANCES 2023; 9:eadd8023. [PMID: 37163605 PMCID: PMC10171824 DOI: 10.1126/sciadv.add8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Despite the high lethality of colorectal cancers (CRCs), only a limited number of genetic risk factors are identified. The mammalian ssDNA-binding protein complex CTC1-STN1-TEN1 protects genome stability, yet its role in tumorigenesis is unknown. Here, we show that attenuated CTC1/STN1 expression is common in CRCs. We generated an inducible STN1 knockout mouse model and found that STN1 deficiency in young adult mice increased CRC incidence, tumor size, and tumor load. CRC tumors exhibited enhanced proliferation, reduced apoptosis, and elevated DNA damage and replication stress. We found that STN1 deficiency down-regulated multiple DNA glycosylases, resulting in defective base excision repair (BER) and accumulation of oxidative damage. Collectively, this study identifies STN1 deficiency as a risk factor for CRC and implicates the previously unknown STN1-BER axis in protecting colon tissues from oxidative damage, therefore providing insights into the CRC tumor-suppressing mechanism.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Eugene Kim
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Nhat Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Raymond Joseph Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Thi Ngoc Thanh Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Olga Shiva
- Office of Research, Washington State University-Spokane, Spokane, WA, USA
| | - Minh Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
25
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
26
|
Mirman Z, Cai S, de Lange T. CST/Polα/primase-mediated fill-in synthesis at DSBs. Cell Cycle 2023; 22:379-389. [PMID: 36205622 PMCID: PMC9879193 DOI: 10.1080/15384101.2022.2123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a major threat to the genome, so the efficient repair of such breaks is essential. DSB processing and repair is affected by 53BP1, which has been proposed to determine repair pathway choice and/or promote repair fidelity. 53BP1 and its downstream effectors, RIF1 and shieldin, control 3' overhang length, and the mechanism has been a topic of intensive research. Here, we highlight recent evidence that 3' overhang control by 53BP1 occurs through fill-in synthesis of resected DSBs by CST/Polα/primase. We focus on the crucial role of fill-in synthesis in BRCA1-deficient cells treated with PARPi and discuss the notion of fill-in synthesis in other specialized settings and in the repair of random DSBs. We argue that - in addition to other determinants - repair pathway choice may be influenced by the DNA sequence at the break which can impact CST binding and therefore the deployment of Polα/primase fill-in.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, HHMI, Boston, MA, USA
| | - Sarah Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Laboratory for Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
27
|
Coloma J, Gonzalez-Rodriguez N, Balaguer FA, Gmurczyk K, Aicart-Ramos C, Nuero ÓM, Luque-Ortega JR, Calugaru K, Lue NF, Moreno-Herrero F, Llorca O. Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity. Nucleic Acids Res 2023; 51:668-686. [PMID: 36629261 PMCID: PMC9881146 DOI: 10.1093/nar/gkac1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.
Collapse
Affiliation(s)
- Javier Coloma
- Correspondence may also be addressed to Javier Coloma. Tel: +34 91 732 8000 (Ext 3033);
| | | | - Francisco A Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karolina Gmurczyk
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Óscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Kimberly Calugaru
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Oscar Llorca
- To whom correspondence should be addressed. Tel: +34 91 732 8000 (Ext 3000);
| |
Collapse
|
28
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
29
|
Olson CL, Barbour AT, Wuttke DS. Filling in the blanks: how the C-strand catches up to the G-strand at replicating telomeres using CST. Nat Struct Mol Biol 2022; 29:730-733. [PMID: 35948770 DOI: 10.1038/s41594-022-00818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
30
|
He Q, Lin X, Chavez BL, Agrawal S, Lusk BL, Lim CJ. Structures of the human CST-Polα-primase complex bound to telomere templates. Nature 2022; 608:826-832. [PMID: 35830881 DOI: 10.1038/s41586-022-05040-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/29/2022] [Indexed: 01/26/2023]
Abstract
The mammalian DNA polymerase-α-primase (Polα-primase) complex is essential for DNA metabolism, providing the de novo RNA-DNA primer for several DNA replication pathways1-4 such as lagging-strand synthesis and telomere C-strand fill-in. The physical mechanism underlying how Polα-primase, alone or in partnership with accessory proteins, performs its complicated multistep primer synthesis function is unknown. Here we show that CST, a single-stranded DNA-binding accessory protein complex for Polα-primase, physically organizes the enzyme for efficient primer synthesis. Cryogenic electron microscopy structures of the CST-Polα-primase preinitiation complex (PIC) bound to various types of telomere overhang reveal that template-bound CST partitions the DNA and RNA catalytic centres of Polα-primase into two separate domains and effectively arranges them in RNA-DNA synthesis order. The architecture of the PIC provides a single solution for the multiple structural requirements for the synthesis of RNA-DNA primers by Polα-primase. Several insights into the template-binding specificity of CST, template requirement for assembly of the CST-Polα-primase PIC and activation are also revealed in this study.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiuhua Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bianca L Chavez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sourav Agrawal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin L Lusk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Structure of Tetrahymena telomerase-bound CST with polymerase α-primase. Nature 2022; 608:813-818. [PMID: 35831498 PMCID: PMC9728385 DOI: 10.1038/s41586-022-04931-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/06/2022] [Indexed: 02/03/2023]
Abstract
Telomeres are the physical ends of linear chromosomes. They are composed of short repeating sequences (such as TTGGGG in the G-strand for Tetrahymena thermophila) of double-stranded DNA with a single-strand 3' overhang of the G-strand and, in humans, the six shelterin proteins: TPP1, POT1, TRF1, TRF2, RAP1 and TIN21,2. TPP1 and POT1 associate with the 3' overhang, with POT1 binding the G-strand3 and TPP1 (in complex with TIN24) recruiting telomerase via interaction with telomerase reverse transcriptase5 (TERT). The telomere DNA ends are replicated and maintained by telomerase6, for the G-strand, and subsequently DNA polymerase α-primase7,8 (PolαPrim), for the C-strand9. PolαPrim activity is stimulated by the heterotrimeric complex CTC1-STN1-TEN110-12 (CST), but the structural basis of the recruitment of PolαPrim and CST to telomere ends remains unknown. Here we report cryo-electron microscopy (cryo-EM) structures of Tetrahymena CST in the context of the telomerase holoenzyme, in both the absence and the presence of PolαPrim, and of PolαPrim alone. Tetrahymena Ctc1 binds telomerase subunit p50, a TPP1 orthologue, on a flexible Ctc1 binding motif revealed by cryo-EM and NMR spectroscopy. The PolαPrim polymerase subunit POLA1 binds Ctc1 and Stn1, and its interface with Ctc1 forms an entry port for G-strand DNA to the POLA1 active site. We thus provide a snapshot of four key components that are required for telomeric DNA synthesis in a single active complex-telomerase-core ribonucleoprotein, p50, CST and PolαPrim-that provides insights into the recruitment of CST and PolαPrim and the handoff between G-strand and C-strand synthesis.
Collapse
|
32
|
Kelich J, Aramburu T, van der Vis JJ, Showe L, Kossenkov A, van der Smagt J, Massink M, Schoemaker A, Hennekam E, Veltkamp M, van Moorsel CH, Skordalakes E. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J Exp Med 2022; 219:e20211681. [PMID: 35420632 PMCID: PMC9014792 DOI: 10.1084/jem.20211681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Exonic sequencing identified a family with idiopathic pulmonary fibrosis (IPF) containing a previously unreported heterozygous mutation in POT1 p.(L259S). The family displays short telomeres and genetic anticipation. We found that POT1(L259S) is defective in binding the telomeric overhang, nuclear accumulation, negative regulation of telomerase, and lagging strand maintenance. Patient cells containing the mutation display telomere loss, lagging strand defects, telomere-induced DNA damage, and premature senescence with G1 arrest. Our data suggest POT1(L259S) is a pathogenic driver of IPF and provide insights into gene therapy options.
Collapse
Affiliation(s)
| | | | - Joanne J. van der Vis
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | | | | - Jasper van der Smagt
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten Massink
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angela Schoemaker
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eric Hennekam
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | - Coline H.M. van Moorsel
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | |
Collapse
|
33
|
Wang L, Ma T, Liu W, Li H, Luo Z, Feng X. Pan-Cancer Analyses Identify the CTC1-STN1-TEN1 Complex as a Protective Factor and Predictive Biomarker for Immune Checkpoint Blockade in Cancer. Front Genet 2022; 13:859617. [PMID: 35368664 PMCID: PMC8966541 DOI: 10.3389/fgene.2022.859617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The CTC1-STN1-TEN1 (CST) complex plays a crucial role in telomere replication and genome stability. However, the detailed mechanisms of CST regulation in cancer remain largely unknown. Here, we perform a comprehensive analysis of CST across 33 cancer types using multi-omic data from The Cancer Genome Atlas. In the genomic landscape, we identify CTC1/STN1 deletion and mutation and TEN1 amplification as the dominant alteration events. Expressions of CTC1 and STN1 are decreased in tumors compared to those in adjacent normal tissues. Clustering analysis based on CST expression reveals three cancer clusters displaying differences in survival, telomerase activity, cell proliferation, and genome stability. Interestingly, we find that CTC1 and STN1, but not TEN1, are co-expressed and associated with better survival. CTC1-STN1 is positively correlated with CD8 T cells and B cells and predicts a better response to immune checkpoint blockade in external datasets of cancer immunotherapy. Pathway analysis shows that MYC targets are negatively correlated with CTC1-STN1. We experimentally validated that knockout of CTC1 increased the mRNA level of c-MYC. Furthermore, CTC1 and STN1 are repressed by miRNAs and lncRNAs. Finally, by mining the connective map database, we discover a number of potential drugs that may target CST. In sum, this study illustrates CTC1-STN1 as a protective factor and provides broad molecular signatures for further functional and therapeutic studies of CST in cancer.
Collapse
Affiliation(s)
- Lishuai Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tengfei Ma
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| | - Xuyang Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| |
Collapse
|
34
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
35
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
36
|
Zaug AJ, Lim CJ, Olson CL, Carilli MT, Goodrich K, Wuttke D, Cech T. CST does not evict elongating telomerase but prevents initiation by ssDNA binding. Nucleic Acids Res 2021; 49:11653-11665. [PMID: 34718732 PMCID: PMC8599947 DOI: 10.1093/nar/gkab942] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The CST complex (CTC1-STN1-TEN1) has been shown to inhibit telomerase extension of the G-strand of telomeres and facilitate the switch to C-strand synthesis by DNA polymerase alpha-primase (pol α-primase). Recently the structure of human CST was solved by cryo-EM, allowing the design of mutant proteins defective in telomeric ssDNA binding and prompting the reexamination of CST inhibition of telomerase. The previous proposal that human CST inhibits telomerase by sequestration of the DNA primer was tested with a series of DNA-binding mutants of CST and modeled by a competitive binding simulation. The DNA-binding mutants had substantially reduced ability to inhibit telomerase, as predicted from their reduced affinity for telomeric DNA. These results provide strong support for the previous primer sequestration model. We then tested whether addition of CST to an ongoing processive telomerase reaction would terminate DNA extension. Pulse-chase telomerase reactions with addition of either wild-type CST or DNA-binding mutants showed that CST has no detectable ability to terminate ongoing telomerase extension in vitro. The same lack of inhibition was observed with or without pol α-primase bound to CST. These results suggest how the switch from telomerase extension to C-strand synthesis may occur.
Collapse
Affiliation(s)
- Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Maria T Carilli
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
37
|
Chatain J, Blond A, Phan AT, Saintomé C, Alberti P. GGGCTA repeats can fold into hairpins poorly unfolded by replication protein A: a possible origin of the length-dependent instability of GGGCTA variant repeats in human telomeres. Nucleic Acids Res 2021; 49:7588-7601. [PMID: 34214172 PMCID: PMC8287962 DOI: 10.1093/nar/gkab518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Human telomeres are composed of GGGTTA repeats and interspersed with variant repeats. The GGGCTA variant motif was identified in the proximal regions of human telomeres about 10 years ago and was shown to display a length-dependent instability. In parallel, a structural study showed that four GGGCTA repeats folded into a non-canonical G-quadruplex (G4) comprising a Watson-Crick GCGC tetrad. It was proposed that this non-canonical G4 might be an additional obstacle for telomere replication. In the present study, we demonstrate that longer GGGCTA arrays fold into G4 and into hairpins. We also demonstrate that replication protein A (RPA) efficiently binds to GGGCTA repeats structured into G4 but poorly binds to GGGCTA repeats structured into hairpins. Our results (along with results obtained with a more stable variant motif) suggest that GGGCTA hairpins are at the origin of GGGCTA length-dependent instability. They also suggest, as working hypothesis, that failure of efficient binding of RPA to GGGCTA structured into hairpins might be involved in the mechanism of GGGCTA array instability. On the basis of our present and past studies about telomeric G4 and their interaction with RPA, we propose an original point of view about telomeric G4 and the evolution of telomeric motifs.
Collapse
Affiliation(s)
- Jean Chatain
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
| | - Alain Blond
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d’Histoire naturelle, CNRS, Paris 75005, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Carole Saintomé
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
- Sorbonne Université, UFR927, Paris 75005, France
| | - Patrizia Alberti
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
| |
Collapse
|
38
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
39
|
Liu Y, Zhao X, Wang B, Liu Z, Zhang M, Wang J, Xu C, Wang Y, Du L, Wang F, Wang Q, Liu Q. miR-376a Provokes Rectum Adenocarcinoma Via CTC1 Depletion-Induced Telomere Dysfunction. Front Cell Dev Biol 2021; 9:649328. [PMID: 33937245 PMCID: PMC8085492 DOI: 10.3389/fcell.2021.649328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
CTC1 is a component of the mammalian CST (CTC1–STN1–TEN1) complex which plays essential roles in resolving replication problems to facilitate telomeric DNA and genomic DNA replication. We previously reported that the depletion of CTC1 leads to stalled replication fork restart defects. Moreover, the mutation in CTC1 caused cancer-prone diseases including Coats plus (CP) or dyskeratosis congenita (DC). To better understand the CTC1 regulatory axis, the microRNAs (miRNAs) targeting to CTC1 were predicted by a bioinformatics tool, and the selected candidates were further confirmed by a dual-luciferase reporter assay. Here, our current results revealed that miR-376a significantly reduced CTC1 expression at the transcription level by recognizing CTC1 3′-UTR. In addition, the overexpression of miR-376a induced telomere replication defection and resulted in direct replicative telomere damage, which could be rescued by adding back CTC1. Telomere shortening was also observed upon miR-376a treatment. Furthermore, for the clinical patient samples, the high expression of miR-376a was associated with the deregulation of CTC1 and a poor outcome for the rectum adenocarcinoma patients. Together, our results uncovered a novel role of miR-376a in stimulating rectum adenocarcinoma progression via CTC1 downregulating induced telomere dysfunction.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Bing Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhijia Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| |
Collapse
|
40
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
41
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
42
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Ackerson SM, Gable CI, Stewart JA. Human CTC1 promotes TopBP1 stability and CHK1 phosphorylation in response to telomere dysfunction and global replication stress. Cell Cycle 2020; 19:3491-3507. [PMID: 33269665 PMCID: PMC7781613 DOI: 10.1080/15384101.2020.1849979] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/21/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a heterotrimeric, RPA-like complex that binds to single-stranded DNA (ssDNA) and functions in the replication of telomeric and non-telomeric DNA. Previous studies demonstrated that deletion of CTC1 results in decreased cell proliferation and telomere DNA damage signaling. However, a detailed analysis of the consequences of conditional CTC1 knockout (KO) has not been fully elucidated. Here, we investigated the effects of CTC1 KO on cell cycle progression, genome-wide replication and activation of the DNA damage response. Consistent with previous findings, we demonstrate that CTC1 KO results in decreased cell proliferation, G2 arrest and RPA-bound telomeric ssDNA. However, despite the increased levels of telomeric RPA-ssDNA, global ATR-dependent CHK1 and p53 phosphorylation was not detected in CTC1 KO cells. Nevertheless, we show that RPA-ssDNA does activate ATR, leading to the phosphorylation of RPA and autophosphorylation of ATR. Further analysis determined that inactivation of ATR, but not CHK1 or ATM, suppressed the accumulation of G2 arrested cells and phosphorylated RPA following CTC1 removal. These results suggest that ATR is localized and active at telomeres but is unable to elicit a global checkpoint response through CHK1. Furthermore, CTC1 KO inhibited CHK1 phosphorylation following hydroxyurea-induced replication stress. Additional studies revealed that this suppression of CHK1 phosphorylation, following replication stress, is caused by decreased levels of the ATR activator TopBP1. Overall, our results identify CST as a novel regulator of the ATR-CHK1 pathway.
Collapse
Affiliation(s)
| | - Caroline I. Gable
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jason A. Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
44
|
Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes Dev 2020; 34:1619-1636. [PMID: 33122293 PMCID: PMC7706707 DOI: 10.1101/gad.337287.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
In this study, Pinzaru et al. set out to uncover the pathways that enable the proliferation of cells expressing cancer-associated POT1 mutations. Using complementary genetic and proteomic approaches, the authors identify a conserved function for the NPC in resolving replication defects at telomere loci. Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.
Collapse
|
45
|
Wassing IE, Esashi F. RAD51: Beyond the break. Semin Cell Dev Biol 2020; 113:38-46. [PMID: 32938550 PMCID: PMC8082279 DOI: 10.1016/j.semcdb.2020.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023]
Abstract
As the primary catalyst of homologous recombination (HR) in vertebrates, RAD51 has been extensively studied in the context of repair of double-stranded DNA breaks (DSBs). With recent advances in the understanding of RAD51 function extending beyond DSBs, the importance of RAD51 throughout DNA metabolism has become increasingly clear. Here we review the suggested roles of RAD51 beyond HR, specifically focusing on their interplay with DNA replication and the maintenance of genomic stability, in which RAD51 function emerges as a double-edged sword.
Collapse
Affiliation(s)
- Isabel E Wassing
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Aramburu T, Plucinsky S, Skordalakes E. POT1-TPP1 telomere length regulation and disease. Comput Struct Biotechnol J 2020; 18:1939-1946. [PMID: 32774788 PMCID: PMC7385035 DOI: 10.1016/j.csbj.2020.06.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022] Open
Abstract
Telomeres are DNA repeats at the ends of linear chromosomes and are replicated by telomerase, a ribonucleoprotein reverse transcriptase. Telomere length regulation and chromosome end capping are essential for genome stability and are mediated primarily by the shelterin and CST complexes. POT1-TPP1, a subunit of shelterin, binds the telomeric overhang, suppresses ATR-dependent DNA damage response, and recruits telomerase to telomeres for DNA replication. POT1 localization to telomeres and chromosome end protection requires its interaction with TPP1. Therefore, the POT1-TPP1 complex is critical to telomere maintenance and full telomerase processivity. The aim of this mini-review is to summarize recent POT1-TPP1 structural studies and discuss how the complex contributes to telomere length regulation. In addition, we review how disruption of POT1-TPP1 function leads to human disease.
Collapse
Key Words
- ATM, Ataxia Telangiectasia Mutated protein
- ATR, Ataxia Telangiectasia and Rad3-related Protein
- CST, CTC1, Stn1 and Ten1
- CTC1, Conserved Telomere Capping Protein 1
- POT1
- POT1, Protection of telomere 1
- RAP1, Repressor/Activator Protein 1
- RPA, Replication Protein A
- SMCHD1, Structural Maintenance Of Chromosomes Flexible Hinge Domain Containing 1
- Shelterin
- Stn1, Suppressor of Cdc Thirteen
- TERC, Telomerase RNA
- TERT, Telomerase Reverse Transcriptase
- TIN2, TRF1- and TRF2-Interacting Nuclear Protein 2
- TPP1
- TPP1 also known as ACD, Adrenocortical Dysplasia Protein Homolog
- TRF1, Telomere Repeat binding Factor 1
- TRF2, Telomere Repeat binding Factor 2
- TSPYL5, Testis-specific Y-encoded-like protein 5
- Telomerase
- Telomeres
- Ten1, Telomere Length Regulation Protein
- USP7, ubiquitin-specific-processing protease 7
Collapse
|
47
|
Lim CJ, Barbour AT, Zaug AJ, Goodrich KJ, McKay AE, Wuttke DS, Cech TR. The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science 2020; 368:1081-1085. [PMID: 32499435 DOI: 10.1126/science.aaz9649] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
The CTC1-STN1-TEN1 (CST) complex is essential for telomere maintenance and resolution of stalled replication forks genome-wide. Here, we report the 3.0-angstrom cryo-electron microscopy structure of human CST bound to telomeric single-stranded DNA (ssDNA), which assembles as a decameric supercomplex. The atomic model of the 134-kilodalton CTC1 subunit, built almost entirely de novo, reveals the overall architecture of CST and the DNA-binding anchor site. The carboxyl-terminal domain of STN1 interacts with CTC1 at two separate docking sites, allowing allosteric mediation of CST decamer assembly. Furthermore, ssDNA appears to staple two monomers to nucleate decamer assembly. CTC1 has stronger structural similarity to Replication Protein A than the expected similarity to yeast Cdc13. The decameric structure suggests that CST can organize ssDNA analogously to the nucleosome's organization of double-stranded DNA.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Allison E McKay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
48
|
Nelson CP, Codd V. Genetic determinants of telomere length and cancer risk. Curr Opin Genet Dev 2020; 60:63-68. [PMID: 32171108 DOI: 10.1016/j.gde.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship of telomere length with cancer risk has been the source of much debate within epidemiological studies, which have produced inconsistent finding both between and within different cancer types. Over recent years, genome-wide association studies of increasing size have identified variants that determine human telomere length. These variants have subsequently been utilised as instrumental variables in Mendelian randomisation based studies, allowing the investigation of potential causal relationships between telomere length and cancer. Here we discuss recent advances in both genomic discovery, studies that give increasing evidence towards a causal role for telomere length in cancer risk and considerations for future studies.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
49
|
Gong Y, Stock AJ, Liu Y. The enigma of excessively long telomeres in cancer: lessons learned from rare human POT1 variants. Curr Opin Genet Dev 2020; 60:48-55. [PMID: 32155570 DOI: 10.1016/j.gde.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
The discovery that rare POT1 variants are associated with extremely long telomeres and increased cancer predisposition has provided a framework to revisit the relationship between telomere length and cancer development. Telomere shortening is linked with increased risk for cancer. However, over the past decade, there is increasing evidence to show that extremely long telomeres caused by mutations in shelterin components (POT1, TPP1, and RAP1) also display an increased risk of cancer. Here, we will review current knowledge on germline mutations of POT1 identified from cancer-prone families. In particular, we will discuss some common features presented by the mutations through structure-function studies. We will further provide an overview of how POT1 mutations affect telomere length regulation and tumorigenesis.
Collapse
Affiliation(s)
- Yi Gong
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| | - Amanda J Stock
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| | - Yie Liu
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| |
Collapse
|
50
|
Zhao S, Wang F, Liu L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes (Basel) 2019; 10:genes10121030. [PMID: 31835618 PMCID: PMC6947546 DOI: 10.3390/genes10121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|