1
|
Varela Salgado M, Piatti S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. J Fungi (Basel) 2024; 10:642. [PMID: 39330402 PMCID: PMC11433133 DOI: 10.3390/jof10090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| |
Collapse
|
2
|
Abstract
S. cerevisiae can be arrested in metaphase by depleting Cdc20. We describe (1) how to achieve this arrest and verify it, (2) how to label cell surface glycans covalently to distinguish mother from bud, and (3) how to detect the nucleolus and learn that it remains in the mother domain upon arrest. For complete details on the use and execution of this protocol, please refer to Tartakoff et al. (2021), Rai et al. (2017), and Zapanta Rinonos et al. (2014).
Collapse
Affiliation(s)
- Alan Michael Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Spiliotis ET, McMurray MA. Masters of asymmetry - lessons and perspectives from 50 years of septins. Mol Biol Cell 2021; 31:2289-2297. [PMID: 32991244 PMCID: PMC7851956 DOI: 10.1091/mbc.e19-11-0648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.
Collapse
Affiliation(s)
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
4
|
Rai U, Najm F, Tartakoff AM. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest. PLoS One 2017; 12:e0174306. [PMID: 28339487 PMCID: PMC5365125 DOI: 10.1371/journal.pone.0174306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle.
Collapse
Affiliation(s)
- Urvashi Rai
- Cell Biology Program/Department of Molecular and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fadi Najm
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M. Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Polarized growth is critical for the development and maintenance of diverse organisms and tissues but particularly so in fungi, where nutrient uptake, communication, and reproduction all rely on cell asymmetries. To achieve polarized growth, fungi spatially organize both their cytosol and cortical membranes. Septins, a family of GTP-binding proteins, are key regulators of spatial compartmentalization in fungi and other eukaryotes. Septins form higher-order structures on fungal plasma membranes and are thought to contribute to the generation of cell asymmetries by acting as molecular scaffolds and forming diffusional barriers. Here we discuss the links between septins and polarized growth and consider molecular models for how septins contribute to cellular asymmetry in fungi.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Molly McQuilken
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
6
|
Moosavi B, Mousavi B, Yang GF. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Traffic 2015; 17:5-20. [PMID: 26503767 DOI: 10.1111/tra.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
The model eukaryotic yeast Saccharomyces cerevisiae has proven a useful model system in which prion biogenesis and elimination are studied. Several yeast prions exist in budding yeast and a number of studies now suggest that these alternate protein conformations may play important roles in the cell. During the last few years cellular factors affecting prion induction, propagation and elimination have been identified. Amongst these, proteins involved in the regulation of the actin cytoskeleton and dynamic membrane processes such as endocytosis have been found to play a critical role not only in facilitating de novo prion formation but also in prion propagation. Here we briefly review prion formation and maintenance with special attention given to the cellular processes that require the functionality of the actin cytoskeleton.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
7
|
Tartakoff AM. Cell biology of yeast zygotes, from genesis to budding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1702-14. [PMID: 25862405 DOI: 10.1016/j.bbamcr.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. EUKARYOTIC CELL 2014; 13:1411-20. [PMID: 25217460 DOI: 10.1128/ec.00191-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The septins are a family of GTP-binding proteins that form cytoskeletal filaments. Septins are highly conserved and evolutionarily ancient but are absent from land plants. The synthetic plant cytokinin forchlorfenuron (FCF) was shown previously to inhibit budding yeast cell division and induce ectopic septin structures (M. Iwase, S. Okada, T. Oguchi, and A. Toh-e, Genes Genet. Syst. 79:199-206, 2004, http://dx.doi.org/10.1266/ggs.79.199). Subsequent studies in a wide range of eukaryotes have concluded that FCF exclusively inhibits septin function, yet the mechanism of FCF action in nonplant cells remains poorly understood. Here, we report that the cellular effects of FCF are far more complex than previously described. The reported growth arrest of budding yeast cells treated with 1 mM FCF partly reflects sensitization caused by a bud4 mutation present in the W303 strain background. In wild-type (BUD4(+)) budding yeast, growth was inhibited at FCF concentrations that had no detectable effect on septin structure or function. Moreover, FCF severely inhibited the proliferation of fission yeast cells, in which septin function is nonessential. FCF induced fragmentation of budding yeast mitochondrial reticula and the loss of mitochondrial membrane potential. Mitochondria also fragmented in cultured mammalian cells treated with concentrations of FCF that previously were assumed to target septins only. Finally, FCF potently inhibited ciliation and motility and induced mitochondrial disorganization in Tetrahymena thermophila without apparent alterations in septin structure. None of these effects was consistent with the inhibition of septin function. Our findings point to nonseptin targets as major concerns when using FCF.
Collapse
|
9
|
Sequential logic of polarity determination during the haploid-to-diploid transition in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 13:1393-402. [PMID: 25172767 DOI: 10.1128/ec.00161-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In many organisms, the geometry of encounter of haploid germ cells is arbitrary. In Saccharomyces cerevisiae, the resulting zygotes have been seen to bud asymmetrically in several directions as they produce diploid progeny. What mechanisms account for the choice of direction, and do the mechanisms directing polarity change over time? Distinct subgroups of cortical "landmark" proteins guide budding by haploid versus diploid cells, both of which require the Bud1/Rsr1 GTPase to link landmarks to actin. We observed that as mating pairs of haploid cells form zygotes, bud site specification progresses through three phases. The first phase follows disassembly and limited scattering of proteins that concentrated at the zone of cell contact, followed by their reassembly to produce a large medial bud. Bud1 is not required for medial placement of the initial bud. The second phase produces a contiguous bud(s) and depends on axial landmarks. As the titer of the Axl1 landmark diminishes, the third phase ultimately redirects budding toward terminal sites and is promoted by bipolar landmarks. Thus, following the initial random encounter that specifies medial budding, sequential spatial choices are orchestrated by the titer of a single cortical determinant that determines whether successive buds will be contiguous to their predecessors.
Collapse
|