1
|
Batabyal S, Idigo C, Narcisse D, Dibas A, Mohanty S. Response of heterologously expressed pressure sensor-actuator-modulator macromolecule to external mechanical stress. Heliyon 2024; 10:e29195. [PMID: 38644861 PMCID: PMC11031797 DOI: 10.1016/j.heliyon.2024.e29195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Cells from different organs in the body experience a range of mechanical and osmotic pressures that change in various diseases, including neurological, cardiovascular, ophthalmological, and renal diseases. Here, we demonstrate the use of an engineered Sensor-Actuator-Modulator (SAM) of microbial origin derived from a mechanosensitive channel of large conductance (MscL) for sensing external mechanical stress and modulating activities of mammalian cells. SAM is reliably expressed in the mammalian cell membrane and acts as a tension-activated pressure release valve. Further, the activities of heterologously expressed SAM in mammalian cells could be modulated by osmotic pressure. A comparison of the mechanosensitive activities of SAM-variants from different microbial origins shows differential inward current and dye uptake in response to mechanical stress exerted by hypo-osmotic shock. The use of SAM channels as mechanical stress-activated modulators in mammalian cells could provide new therapeutic approaches for treating disorders related to mechanical or osmotic pressure.
Collapse
Affiliation(s)
- Subrata Batabyal
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Chinenye Idigo
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Darryl Narcisse
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Adnan Dibas
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | | |
Collapse
|
2
|
Zhang M, Tang S, Wang X, Fang S, Li Y. Mechanosensitive channel MscL gating transitions coupling with constriction point shift. Protein Sci 2024; 33:e4965. [PMID: 38501596 PMCID: PMC10949393 DOI: 10.1002/pro.4965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
- School of Life ScienceWestlake UniversityHangzhouChina
- School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Siyang Tang
- School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Sanhua Fang
- Core FacilitiesZhejiang University School of MedicineHangzhouChina
| | - Yuezhou Li
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| |
Collapse
|
3
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
4
|
Cowgill J, Chanda B. Charge-voltage curves of Shaker potassium channel are not hysteretic at steady state. J Gen Physiol 2023; 155:213823. [PMID: 36692860 PMCID: PMC9884579 DOI: 10.1085/jgp.202112883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Charge-voltage curves of many voltage-gated ion channels exhibit hysteresis but such curves are also a direct measure of free energy of channel gating and, hence, should be path-independent. Here, we identify conditions to measure steady-state charge-voltage curves and show that these are curves are not hysteretic. Charged residues in transmembrane segments of voltage-gated ion channels (VGICs) sense and respond to changes in the electric field. The movement of these gating charges underpins voltage-dependent activation and is also a direct metric of the net free-energy of channel activation. However, for most voltage-gated ion channels, the charge-voltage (Q-V) curves appear to be dependent on initial conditions. For instance, Q-V curves of Shaker potassium channel obtained by hyperpolarizing from 0 mV is left-shifted compared to those obtained by depolarizing from a holding potential of -80 mV. This hysteresis in Q-V curves is a common feature of channels in the VGIC superfamily and raises profound questions about channel energetics because the net free-energy of channel gating is a state function and should be path independent. Due to technical limitations, conventional gating current protocols are limited to test pulse durations of <500 ms, which raises the possibility that the dependence of Q-V on initial conditions reflects a lack of equilibration. Others have suggested that the hysteresis is fundamental thermodynamic property of voltage-gated ion channels and reflects energy dissipation due to measurements under non-equilibrium conditions inherent to rapid voltage jumps (Villalba-Galea. 2017. Channels. https://doi.org/10.1080/19336950.2016.1243190). Using an improved gating current and voltage-clamp fluorometry protocols, we show that the gating hysteresis arising from different initial conditions in Shaker potassium channel is eliminated with ultra-long (18-25 s) test pulses. Our study identifies a modified gating current recording protocol to obtain steady-state Q-V curves of a voltage-gated ion channel. Above all, these findings demonstrate that the gating hysteresis in Shaker channel is a kinetic phenomenon rather than a true thermodynamic property of the channel and the charge-voltage curve is a true measure of the net-free energy of channel gating.
Collapse
Affiliation(s)
- John Cowgill
- Departments of Anesthesiology, Neuroscience, Biochemistry and Molecular Biophysics, Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA,John Cowgill:
| | - Baron Chanda
- Departments of Anesthesiology, Neuroscience, Biochemistry and Molecular Biophysics, Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA,Correspondence to Baron Chanda:
| |
Collapse
|
5
|
Wang J, Blount P. Feeling the Tension: The Bacterial Mechanosensitive Channel MscL as a Model System and Drug Target. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Bavi O, Zhou Z, Bavi N, Mehdi Vaez Allaei S, Cox CD, Martinac B. Asymmetric effects of amphipathic molecules on mechanosensitive channels. Sci Rep 2022; 12:9976. [PMID: 35705645 PMCID: PMC9200802 DOI: 10.1038/s41598-022-14446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanosensitive (MS) ion channels are primary transducers of mechanical force into electrical and/or chemical intracellular signals. Many diverse MS channel families have been shown to respond to membrane forces. As a result of this intimate relationship with the membrane and proximal lipids, amphipathic compounds exert significant effects on the gating of MS channels. Here, we performed all-atom molecular dynamics (MD) simulations and employed patch-clamp recording to investigate the effect of two amphipaths, Fluorouracil (5-FU) a chemotherapy agent, and the anaesthetic trifluoroethanol (TFE) on structurally distinct mechanosensitive channels. We show that these amphipaths have a profound effect on the bilayer order parameter as well as transbilayer pressure profile. We used bacterial mechanosensitive channels (MscL/MscS) and a eukaryotic mechanosensitive channel (TREK-1) as force-from-lipids reporters and showed that these amphipaths have differential effects on these channels depending on the amphipaths' size and shape as well as which leaflet of the bilayer they incorporate into. 5-FU is more asymmetric in shape and size than TFE and does not penetrate as deep within the bilayer as TFE. Thereby, 5-FU has a more profound effect on the bilayer and channel activity than TFE at much lower concentrations. We postulate that asymmetric effects of amphipathic molecules on mechanosensitive membrane proteins through the bilayer represents a general regulatory mechanism for these proteins.
Collapse
Affiliation(s)
- Omid Bavi
- grid.444860.a0000 0004 0600 0546Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Zijing Zhou
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia
| | - Navid Bavi
- grid.170205.10000 0004 1936 7822Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL USA
| | - S. Mehdi Vaez Allaei
- grid.46072.370000 0004 0612 7950Department of Physics, University of Tehran, 1439955961 Tehran, Iran
| | - Charles D. Cox
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010 Australia
| | - B. Martinac
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010 Australia
| |
Collapse
|
7
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Johnson SC, Veres J, Malcolm HR. Exploring the diversity of mechanosensitive channels in bacterial genomes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:25-36. [PMID: 33244613 DOI: 10.1007/s00249-020-01478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Mechanosensitive ion channels are responsible for touch sensation and proprioception in higher level organisms such as humans and recovery after osmotic stress in bacteria. Bacterial mechanosensitive channels are homologous to either the mechanosensitive channel of large conductance (MscL) or the mechanosensitive channel of small conductance (MscS). In the E. coli genome there are seven unique mechanosensitive channels, a single MscL homologue, and six MscS homologues. The six MscS homologues are members of the diverse MscS superfamily of ion channels, and these channels show variation on both the N and C termini when compared to E. coli MscS. In bacterial strains with phenotypic analysis of the endogenous mechanosensors, the quantity of MscS superfamily members in the genome range from 2 to 6 and all of the strains contain a copy of MscL. Here, we show an in-depth analysis of over 150 diverse bacterial genomes, encompassing nine phyla, to determine the number of genomes that contain an MscL homologue and the average number of MscS superfamily members per genome. We determined that the average genome contains 4 ± 3 MscS homologues and 67% of bacterial genomes encode for a MscL homologue.
Collapse
Affiliation(s)
- Sarah C Johnson
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Jordyn Veres
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Hannah R Malcolm
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
9
|
Rajeshwar T R, Anishkin A, Sukharev S, Vanegas JM. Mechanical Activation of MscL Revealed by a Locally Distributed Tension Molecular Dynamics Approach. Biophys J 2020; 120:232-242. [PMID: 33333032 DOI: 10.1016/j.bpj.2020.11.2274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Membrane tension perceived by mechanosensitive (MS) proteins mediates cellular responses to mechanical stimuli and osmotic stresses, and it also guides multiple biological functions including cardiovascular control and development. In bacteria, MS channels function as tension-activated pores limiting excessive turgor pressure, with MS channel of large conductance (MscL) acting as an emergency release valve preventing cell lysis. Previous attempts to simulate gating transitions in MscL by either directly applying steering forces to the protein or by increasing the whole-system tension were not fully successful and often disrupted the integrity of the system. We present a novel, to our knowledge, locally distributed tension molecular dynamics (LDT-MD) simulation method that allows application of forces continuously distributed among lipids surrounding the channel using a specially constructed collective variable. We report reproducible and reversible transitions of MscL to the open state with measured parameters of lateral expansion and conductivity that exactly satisfy experimental values. The LDT-MD method enables exploration of the MscL-gating process with different pulling velocities and variable tension asymmetry between the inner and outer membrane leaflets. We use LDT-MD in combination with well-tempered metadynamics to reconstruct the tension-dependent free-energy landscape for the opening transition in MscL. The flexible definition of the LDT collective variable allows general application of our method to study mechanical activation of any membrane-embedded protein.
Collapse
Affiliation(s)
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland
| | - Juan M Vanegas
- Department of Physics, University of Vermont, Burlington, Vermont.
| |
Collapse
|
10
|
Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Role of adhesion forces in mechanosensitive channel gating in Staphylococcus aureus adhering to surfaces. NPJ Biofilms Microbiomes 2020; 6:31. [PMID: 32826897 PMCID: PMC7442641 DOI: 10.1038/s41522-020-00141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 01/18/2023] Open
Abstract
Mechanosensitive channels in bacterial membranes open or close in response to environmental changes to allow transmembrane transport, including antibiotic uptake and solute efflux. In this paper, we hypothesize that gating of mechanosensitive channels is stimulated by forces through which bacteria adhere to surfaces. Hereto, channel gating is related with adhesion forces to different surfaces of a Staphylococcus aureus strain and its isogenic ΔmscL mutant, deficient in MscL (large) channel gating. Staphylococci becoming fluorescent due to uptake of calcein, increased with adhesion force and were higher in the parent strain (66% when adhering with an adhesion force above 4.0 nN) than in the ΔmscL mutant (40% above 1.2 nN). This suggests that MscL channels open at a higher critical adhesion force than at which physically different, MscS (small) channels open and contribute to transmembrane transport. Uptake of the antibiotic dihydrostreptomycin was monitored by staphylococcal killing. The parent strain exposed to dihydrostreptomycin yielded a CFU reduction of 2.3 log-units when adhering with an adhesion force above 3.5 nN, but CFU reduction remained low (1.0 log-unit) in the mutant, independent of adhesion force. This confirms that large channels open at a higher critical adhesion-force than small channels, as also concluded from calcein transmembrane transport. Collectively, these observations support our hypothesis that adhesion forces to surfaces play an important role, next to other established driving forces, in staphylococcal channel gating. This provides an interesting extension of our understanding of transmembrane antibiotic uptake and solute efflux in infectious staphylococcal biofilms in which bacteria experience adhesion forces from a wide variety of surfaces, like those of other bacteria, tissue cells, or implanted biomaterials.
Collapse
Affiliation(s)
- Vera Carniello
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Brandon W Peterson
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| | - Henny C van der Mei
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
12
|
Characterizing the mechanosensitive response of Paraburkholderia graminis membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183176. [PMID: 31923411 DOI: 10.1016/j.bbamem.2020.183176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Bacterial mechanosensitive channels gate in response to membrane tension, driven by shifts in environmental osmolarity. The mechanosensitive channels of small conductance (MscS) and large conductance (MscL) from Escherichia coli (Ec) gate in response to mechanical force applied to the membrane. Ec-MscS is the foundational member of the MscS superfamily of ion channels, a diverse family with at least fifteen subfamilies identified by homology to the pore lining helix of Ec-MscS, as well as significant diversity on the N- and C-termini. The MscL family of channels are homologous to Ec-MscL. In a rhizosphere associated bacterium, Paraburkholderia graminis C4D1M, mechanosensitive channels are essential for cell survival during changing osmotic environments such as a rainstorm. Utilizing bioinformatics, we predicted six MscS superfamily members and a single MscL homologue. The MscS superfamily members fall into at least three subfamilies: bacterial cyclic nucleotide gated, multi-TM, and extended N-terminus. Osmotic downshock experiments show that wildtype P. graminis cells contain a survival mechanism that prevents cell lysis in response to hypoosmotic shock. To determine if this rescue is due to mechanosensitive channels, we developed a method to create giant spheroplasts of P. graminis to explore the single channel response to applied mechanical tension. Patch clamp electrophysiology on these spheroplasts shows two unique conductances: MscL-like and MscS-like. These conductances are due to likely three unique proteins. This indicates that channels that gate in response to mechanical tension are present in the membrane. Here, we report the first single channel evidence of mechanosensitive ion channels from P. graminis membranes.
Collapse
|
13
|
Abstract
Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.
Collapse
|
14
|
Iscla I, Wray R, Eaton C, Blount P. Scanning MscL Channels with Targeted Post-Translational Modifications for Functional Alterations. PLoS One 2015; 10:e0137994. [PMID: 26368283 PMCID: PMC4569298 DOI: 10.1371/journal.pone.0137994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Mechanosensitive channels are present in all living organisms and are thought to underlie the senses of touch and hearing as well as various important physiological functions like osmoregulation and vasoregulation. The mechanosensitive channel of large conductance (MscL) from Escherichia coli was the first protein shown to encode mechanosensitive channel activity and serves as a paradigm for how a channel senses and responds to mechanical stimuli. MscL plays a role in osmoprotection in E. coli, acting as an emergency release valve that is activated by membrane tension due to cell swelling after an osmotic down-shock. Using an osmotically fragile strain in an osmotic down-shock assay, channel functionality can be directly determined in vivo. In addition, using thiol reagents and expressed MscL proteins with a single cysteine substitution, we have shown that targeted post-translational modifications can be performed, and that any alterations that lead to dysfunctional proteins can be identified by this in vivo assay. Here, we present the results of such a scan performed on 113 MscL cysteine mutants using five different sulfhydryl-reacting probes to confer different charges or hydrophobicity to each site. We assessed which of these targeted modifications affected channel function and the top candidates were further studied using patch clamp to directly determine how channel activity was affected. This comprehensive screen has identified many residues that are critical for channel function as well as highlighted MscL domains and residues that undergo the most drastic environmental changes upon gating.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Christina Eaton
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Iscla I, Wray R, Blount P, Larkins-Ford J, Conery AL, Ausubel FM, Ramu S, Kavanagh A, Huang JX, Blaskovich MA, Cooper MA, Obregon-Henao A, Orme I, Tjandra ES, Stroeher UH, Brown MH, Macardle C, van Holst N, Ling Tong C, Slattery AD, Gibson CT, Raston CL, Boulos RA. A new antibiotic with potent activity targets MscL. J Antibiot (Tokyo) 2015; 68:453-62. [PMID: 25649856 PMCID: PMC4430313 DOI: 10.1038/ja.2015.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Abstract
The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Robin Wray
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Paul Blount
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Jonah Larkins-Ford
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Annie L Conery
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Soumya Ramu
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Angela Kavanagh
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Mark A Blaskovich
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ian Orme
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edwin S Tjandra
- School of Animal Biology, The University of Western Australia, Crawley, WA, Australia
| | - Uwe H Stroeher
- School of Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- School of Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Cindy Macardle
- Flinders Medical Science and Technology, Immunology, Allergy and Arthritis, Flinders University, Bedford Park, SA, Australia
| | - Nick van Holst
- Flinders Medical Science and Technology, Immunology, Allergy and Arthritis, Flinders University, Bedford Park, SA, Australia
| | - Chee Ling Tong
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Ashley D Slattery
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Christopher T Gibson
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Colin L Raston
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Ramiz A Boulos
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
16
|
Vanegas JM, Arroyo M. Force transduction and lipid binding in MscL: a continuum-molecular approach. PLoS One 2014; 9:e113947. [PMID: 25437007 PMCID: PMC4250078 DOI: 10.1371/journal.pone.0113947] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023] Open
Abstract
The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, and identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10–13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin.
Collapse
Affiliation(s)
- Juan M. Vanegas
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
- * E-mail:
| | - Marino Arroyo
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| |
Collapse
|
17
|
Zhong D, Yang LM, Blount P. Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface. Biophys J 2014; 106:375-81. [PMID: 24461012 DOI: 10.1016/j.bpj.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
MscL, the highly conserved bacterial mechanosensitive channel of large conductance, is one of the best studied mechanosensors. It is a homopentameric channel that serves as a biological emergency release valve that prevents cell lysis from acute osmotic stress. We previously showed that the periplasmic region of the protein, particularly a single residue located at the TM1/periplasmic loop interface, F47 of Staphylococcus aureus and I49 of Escherichia coli MscL, plays a major role in both the open dwell time and mechanosensitivity of the channel. Here, we introduced cysteine mutations at these sites and found they formed disulfide bridges that decreased the channel open dwell time. By scanning a likely interacting domain, we also found that these sites could be disulfide trapped by addition of cysteine mutations in other locations within the periplasmic loop of MscL, and this also led to rapid channel kinetics. Together, the data suggest structural rearrangements and protein-protein interactions that occur within this region upon normal gating, and further suggest that locking portions of the channel into a transition state decreases the stability of the open state.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
18
|
Zhong D, Blount P. Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics. FASEB J 2014; 28:5234-41. [PMID: 25223610 DOI: 10.1096/fj.14-259309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bacterial mechanosensitive channel of large conductance (MscL) serves as a biological emergency release valve, preventing the occurrence of cell lysis caused by acute osmotic stress. Its tractable nature allows it to serve as a paradigm for how a protein can directly sense membrane tension. Although much is known of the importance of the hydrophobicity of specific residues in channel gating, it has remained unclear whether electrostatics at the membrane plays any role. We studied MscL chimeras derived from functionally distinct orthologues: Escherichia coli and Staphylococcus aureus. Dissection of one set led to an observation that changing the charge of a single residue, K101, of E. coli (Ec)-MscL, effects a channel phenotype: when mutated to a negative residue, the channel is less mechanosensitive and has longer open dwell times. Assuming electrostatic interactions, we determined whether they are due to protein-protein or protein-lipid interactions by performing site-directed mutagenesis elsewhere in the protein and reconstituting channels into defined lipids, with and without negative head groups. We found that although both interactions appear to play some role, the primary determinant of the channel phenotype seems to be protein-lipid electrostatics. The data suggest a model for the role of electrostatic interactions in the dynamics of MscL gating.
Collapse
Affiliation(s)
- Dalian Zhong
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 2014; 20:952-69. [PMID: 23834368 DOI: 10.1089/ars.2013.5471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. RECENT ADVANCES As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. CRITICAL ISSUES In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. FUTURE DIRECTIONS A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.
Collapse
Affiliation(s)
- Boris Martinac
- 1 Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute , Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|