1
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Li T, Petreaca RC, Forsburg SL. Chromodomain mutation in S. pombe Kat5/Mst1 affects centromere dynamics and DNA repair. PLoS One 2024; 19:e0300732. [PMID: 38662722 PMCID: PMC11045136 DOI: 10.1371/journal.pone.0300732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that is involved in multiple cellular activities. This family is characterized in part by containing a chromodomain, a motif associated with binding methylated histones. We show that a chromodomain mutation in the S. pombe Kat5, mst1-W66R, has defects in pericentromere silencing. mst1-W66R is sensitive to camptothecin (CPT) but only at an increased temperature of 36°C, although it is proficient for growth at this temperature. We also describe a de-silencing effect at the pericentromere by CPT that is independent of RNAi and methylation machinery. We also show that mst1-W66R disrupts recruitment of proteins to repair foci in response to camptothecin-induced DNA damage. Our data suggest a function of Mst1 chromodomain in centromere heterochromatin formation and a separate role in genome-wide damage repair in CPT.
Collapse
Affiliation(s)
- Tingting Li
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Ruben C. Petreaca
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Susan L. Forsburg
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
3
|
Jones CE, Forsburg SL. Impact of 1,6-hexanediol on Schizosaccharomyces pombe genome stability. G3 (BETHESDA, MD.) 2023; 13:jkad123. [PMID: 37284815 PMCID: PMC10411564 DOI: 10.1093/g3journal/jkad123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
Phase separation is a major mechanism of macromolecular condensation within cells. A frequently chosen tool for global disruption of phase separation via weak hydrophobic interactions is treatment with 1,6-hexanediol. This study evaluates the cytotoxic and genotoxic effects of treating live fission yeast with 1,6-hexanediol. We find that 1,6-hexanediol causes a drastic decrease in cell survival and growth rate. We also see a reduction in HP1 protein foci and increase in DNA damage foci. However, there is no evidence for increased genomic instability in two classically phase-separated domains, the heterochromatic pericentromere and the nucleolar rDNA repeats. This study reveals that 1,6-hexanediol is a blunt tool for phase separation inhibition and its secondary effects must be taken into consideration during its in vivo use.
Collapse
Affiliation(s)
- Chance E Jones
- Section of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Section of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Mongia P, Toyofuku N, Pan Z, Xu R, Kinoshita Y, Oki K, Takahashi H, Ogura Y, Hayashi T, Nakagawa T. Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere. Commun Biol 2023; 6:551. [PMID: 37237082 DOI: 10.1038/s42003-023-04925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.
Collapse
Affiliation(s)
- Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yakumo Kinoshita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keitaro Oki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
5
|
Kim SM, Forsburg SL. Determinants of RPA megafoci localization to the nuclear periphery in response to replication stress. G3 (BETHESDA, MD.) 2022; 12:jkac116. [PMID: 35567482 PMCID: PMC9258583 DOI: 10.1093/g3journal/jkac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Upon replication stress, ssDNA, coated by the ssDNA-binding protein RPA, accumulates and generates a signal to activate the replication stress response. Severe replication stress induced by the loss of minichromosome maintenance helicase subunit Mcm4 in the temperature-sensitive Schizosaccharomyces pombe degron mutant (mcm4-dg) results in the formation of a large RPA focus that is translocated to the nuclear periphery. We show that resection and repair processes and chromatin remodeler Swr1/Ino80 are involved in the large RPA foci formation and its relocalization to nuclear periphery. This concentrated accumulation of RPA increases the recruitment of Cds1 to chromatin and results in an aberrant cell cycle that lacks MBF-mediated G1/S accumulation of Tos4. These findings reveal a distinct replication stress response mediated by localized accumulation of RPA that allows the evasion of cell cycle arrest.
Collapse
Affiliation(s)
- Seong Min Kim
- Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Susan L Forsburg
- Corresponding author: Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
6
|
Su J, Xu R, Mongia P, Toyofuku N, Nakagawa T. Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genet 2021; 17:e1009671. [PMID: 34292936 PMCID: PMC8297803 DOI: 10.1371/journal.pgen.1009671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3’ DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure. Gross chromosomal rearrangements (GCRs), including translocation, can alter gene dosage and activity, resulting in genetic diseases such as cancer. However, GCRs can occur by some enzymes, including Rad52 recombinase, and result in chromosomal evolution. Therefore, GCRs are not only pathological but also physiological phenomena from an evolutionary point of view. However, the detailed mechanism of GCRs remains unclear. Here, using fission yeast, we show that the homolog of human HLTF, Rad8 causes GCRs through noncanonical ubiquitination of proliferating cellular nuclear antigen (PCNA) at a lysine 107 (K107). Rad51, a DNA strand exchange protein, suppresses the formation of isochromosomes whose arms mirror each another and chromosomal truncation. We found that, like Rad52, Rad8 is required for isochromosome formation but not chromosomal truncation in rad51Δ cells, showing a specific role of Rad8 in homology-mediated GCRs. Mutations in Rad8 ubiquitin E3 ligase RING finger domain, Mms2-Ubc4 ubiquitin-conjugating enzymes, and PCNA K107 reduced GCRs in rad51Δ cells, suggesting that Rad8-Mms2-Ubc4-dependent PCNA K107 ubiquitination facilitates GCRs. PCNA trimers form a DNA sliding clamp. The K107 residue is located at the PCNA-PCNA interface, and an interface mutation D150E restored GCRs in PCNA K107R mutant cells. This study provides genetic evidence that Rad8-dependent PCNA K107 ubiquitination facilitates GCRs by changing the PCNA clamp structure.
Collapse
Affiliation(s)
- Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- * E-mail:
| |
Collapse
|
7
|
Active Replication Checkpoint Drives Genome Instability in Fission Yeast mcm4 Mutant. Mol Cell Biol 2020; 40:MCB.00033-20. [PMID: 32341083 DOI: 10.1128/mcb.00033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Upon replication fork arrest, the replication checkpoint kinase Cds1 is stimulated to preserve genome integrity. Robust activation of Cds1 in response to hydroxyurea prevents the endonuclease Mus81 from cleaving the stalled replication fork inappropriately. However, we find that the response is different in temperature-sensitive mcm4 mutants, affecting a subunit of the MCM replicative helicase. We show that Cds1 inhibition of Mus81 promotes genomic instability and allows mcm4-dg cells to evade cell cycle arrest. Cds1 regulation of Mus81 activity also contributes to the formation of the replication stress-induced DNA damage markers replication protein A (RPA) and Ku. These results identify a surprising role for Cds1 in driving DNA damage and disrupted chromosomal segregation under certain conditions of replication stress.
Collapse
|
8
|
Barg-Wojas A, Muraszko J, Kramarz K, Schirmeisen K, Baranowska G, Carr AM, Dziadkowiec D. Schizosaccharomyces pombe DNA translocases Rrp1 and Rrp2 have distinct roles at centromeres and telomeres that ensure genome stability. J Cell Sci 2020; 133:jcs230193. [PMID: 31932509 DOI: 10.1242/jcs.230193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
The regulation of telomere and centromere structure and function is essential for maintaining genome integrity. Schizosaccharomyces pombe Rrp1 and Rrp2 are orthologues of Saccharomyces cerevisiae Uls1, a SWI2/SNF2 DNA translocase and SUMO-targeted ubiquitin ligase. Here, we show that Rrp1 or Rrp2 overproduction leads to chromosome instability and growth defects, a reduction in global histone levels and mislocalisation of centromere-specific histone Cnp1. These phenotypes depend on putative DNA translocase activities of Rrp1 and Rrp2, suggesting that Rrp1 and Rrp2 may be involved in modulating nucleosome dynamics. Furthermore, we confirm that Rrp2, but not Rrp1, acts at telomeres, reflecting a previously described interaction between Rrp2 and Top2. In conclusion, we identify roles for Rrp1 and Rrp2 in maintaining centromere function by modulating histone dynamics, contributing to the preservation of genome stability during vegetative cell growth.
Collapse
Affiliation(s)
- Anna Barg-Wojas
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Jakub Muraszko
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Karol Kramarz
- Institut Curie, Centre National de la Recherche Scientifique, F-91405, Orsay, France
| | | | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
9
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
10
|
Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroh JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaca RC. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2019; 2:mps2030074. [PMID: 31454903 PMCID: PMC6789737 DOI: 10.3390/mps2030074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023] Open
Abstract
An accurate DNA damage response pathway is critical for the repair of DNA double-strand breaks. Repair may occur by homologous recombination, of which many different sub-pathways have been identified. Some recombination pathways are conservative, meaning that the chromosome sequences are preserved, and others are non-conservative, leading to some alteration of the DNA sequence. We describe an in vivo genetic assay to study non-conservative intra-chromosomal deletions at regions of non-tandem direct repeats in Schizosaccharomyces pombe. This assay can be used to study both spontaneous breaks arising during DNA replication and induced double-strand breaks created with the S. cerevisiae homothallic endonuclease (HO). The preliminary genetic validation of this assay shows that spontaneous breaks require rad52+ but not rad51+, while induced breaks require both genes, in agreement with previous studies. This assay will be useful in the field of DNA damage repair for studying mechanisms of intra-chromosomal deletions.
Collapse
Affiliation(s)
- Bailey E Lucas
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Matthew T McPherson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Tila M Hawk
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Lexia N Wilson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jacob M Kroh
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Kyle G Hickman
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Sean R Fitzgerald
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | | | - P Daniel Rollins
- Molecular Genetics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah M Hylton
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Mohammed A Baseer
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Paige N Montgomery
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA.
| |
Collapse
|
11
|
Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 2019; 46:189-202. [PMID: 29136238 PMCID: PMC5758876 DOI: 10.1093/nar/gkx1010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)—a novel histone H3 modification—participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | - Ying Li
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| |
Collapse
|
12
|
Shen KF, Forsburg SL. Overlapping Roles in Chromosome Segregation for Heterochromatin Protein 1 (Swi6) and DDK in Schizosaccharomyces pombe. Genetics 2019; 212:417-430. [PMID: 31000521 PMCID: PMC6553818 DOI: 10.1534/genetics.119.302125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Fission yeast Swi6 is a human HP1 homolog that plays important roles in multiple cellular processes. In addition to its role in maintaining heterochromatin silencing, Swi6 is required for cohesin enrichment at the pericentromere. Loss of Swi6 leads to abnormal mitosis, including defects in the establishment of bioriented sister kinetochores and microtubule attachment. Swi6 interacts with Dfp1, a regulatory subunit of DBF4-dependent kinase (DDK), and failure to recruit Dfp1 to the pericentromere results in late DNA replication. Using the dfp1-3A mutant allele, which specifically disrupts Swi6-Dfp1 association, we investigated how interaction between Swi6 and Dfp1 affects chromosome dynamics. We find that disrupting the interaction between Swi6 and Dfp1 delays mitotic progression in a spindle assembly checkpoint-dependent manner. Artificially tethering Dfp1 back to the pericentromere is sufficient to restore normal spindle length and rescue segregation defects in swi6-deleted cells. However, Swi6 is necessary for centromeric localization of Rad21-GFP independent of DDK. Our data indicate that DDK contributes to mitotic chromosome segregation in pathways that partly overlap with, but can be separated from both, Swi6 and the other HP1 homolog, Chp2.
Collapse
Affiliation(s)
- Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| |
Collapse
|
13
|
Hamid A, Petreaca B, Petreaca R. Frequent homozygous deletions of the CDKN2A locus in somatic cancer tissues. Mutat Res 2019; 815:30-40. [PMID: 31096160 DOI: 10.1016/j.mrfmmm.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Here we present and describe data on homozygous deletions (HD) of human CDKN2 A and neighboring regions on the p arm of Chromosome 9 from cancer genome sequences deposited on the online Catalogue of Somatic Mutations in Cancer (COSMIC) database. Although CDKN2 A HDs have been previously described in many cancers, this is a pan-cancer report of these aberrations with the aim to map the distribution of the breakpoints. We find that HDs of this locus have a median range of 1,255,650bps. When the deletion breakpoints were mapped on both the telomere and centromere proximal sides of CDKN2A, most of the telomere proximal breakpoints concentrate to a narrow region of the chromosome which includes the gene MTAP.. The centromere proximal breakpoints of the deletions are distributed over a wider chromosomal region. Furthermore, gene expression analysis shows that the deletions that include the CDKN2A region also include the MTAP region and this observation is tissue independent. We propose a model that may explain the origin of the telomere proximal CDKN2A breakpoints Finally, we find that HD distributions for at least three other loci, RB1, SMAD4 and PTEN are also not random.
Collapse
Affiliation(s)
- Abdulaziz Hamid
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Beniamin Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Ruben Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States.
| |
Collapse
|
14
|
Regulation of centromeric heterochromatin in the cell cycle by phosphorylation of histone H3 tyrosine 41. Curr Genet 2019; 65:829-836. [DOI: 10.1007/s00294-019-00962-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
|
15
|
Möller M, Schotanus K, Soyer JL, Haueisen J, Happ K, Stralucke M, Happel P, Smith KM, Connolly LR, Freitag M, Stukenbrock EH. Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS Genet 2019; 15:e1008093. [PMID: 31009462 PMCID: PMC6510446 DOI: 10.1371/journal.pgen.1008093] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/10/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023] Open
Abstract
Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.
Collapse
Affiliation(s)
- Mareike Möller
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Jessica L. Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Janine Haueisen
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kathrin Happ
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Maja Stralucke
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristina M. Smith
- Department of Biology, Oregon State University—Cascades, Bend, OR, United States of America
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Okita AK, Zafar F, Su J, Weerasekara D, Kajitani T, Takahashi TS, Kimura H, Murakami Y, Masukata H, Nakagawa T. Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol 2019; 2:17. [PMID: 30652128 PMCID: PMC6329695 DOI: 10.1038/s42003-018-0251-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintaining centromere integrity remains elusive. Here, we found in fission yeast that heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres. Mutations in Clr4/Suv39 methyltransferase increased the formation of isochromosomes, whose breakpoints were located in centromere repeats. H3K9A and H3K9R mutations also increased GCRs, suggesting that Clr4 suppresses centromeric GCRs via H3K9 methylation. HP1 homologs Swi6 and Chp2 and the RNAi component Chp1 were the chromodomain proteins essential for full suppression of GCRs. Remarkably, mutations in RNA polymerase II (RNAPII) or Tfs1/TFIIS, the transcription factor that facilitates restart of RNAPII after backtracking, specifically bypassed the requirement of Clr4 for suppressing GCRs. These results demonstrate that heterochromatin suppresses GCRs by repressing Tfs1-dependent transcription of centromere repeats.
Collapse
Affiliation(s)
- Akiko K. Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Dayalini Weerasekara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Takuya Kajitani
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 Japan
- Present Address: Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853 USA
| | - Tatsuro S. Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
- Present Address: Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| |
Collapse
|
17
|
Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 2018; 9:4340. [PMID: 30337534 PMCID: PMC6194107 DOI: 10.1038/s41467-018-06545-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.
Collapse
Affiliation(s)
- V Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
18
|
Abstract
In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role in maintaining functional repetitive regions of the genome such as telomeres and centromeres.
Collapse
Affiliation(s)
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, USA
| | | |
Collapse
|
19
|
Gadaleta MC, Noguchi E. Regulation of DNA Replication through Natural Impediments in the Eukaryotic Genome. Genes (Basel) 2017; 8:genes8030098. [PMID: 28272375 PMCID: PMC5368702 DOI: 10.3390/genes8030098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
All living organisms need to duplicate their genetic information while protecting it from unwanted mutations, which can lead to genetic disorders and cancer development. Inaccuracies during DNA replication are the major cause of genomic instability, as replication forks are prone to stalling and collapse, resulting in DNA damage. The presence of exogenous DNA damaging agents as well as endogenous difficult-to-replicate DNA regions containing DNA–protein complexes, repetitive DNA, secondary DNA structures, or transcribing RNA polymerases, increases the risk of genomic instability and thus threatens cell survival. Therefore, understanding the cellular mechanisms required to preserve the genetic information during S phase is of paramount importance. In this review, we will discuss our current understanding of how cells cope with these natural impediments in order to prevent DNA damage and genomic instability during DNA replication.
Collapse
Affiliation(s)
- Mariana C Gadaleta
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
20
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
21
|
Lin SJ, Tapia-Alveal C, Jabado OJ, Germain D, O'Connell MJ. An acetyltransferase-independent function of Eso1 regulates centromere cohesion. Mol Biol Cell 2016; 27:4002-4010. [PMID: 27798241 PMCID: PMC5156541 DOI: 10.1091/mbc.e16-08-0596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Eukaryotes contain three essential Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin, and Smc5/6. Cohesin forms a ring-shaped structure that embraces sister chromatids to promote their cohesion. The cohesiveness of cohesin is promoted by acetylation of N-terminal lysines of the Smc3 subunit by the acetyltransferases Eco1 in Saccharomyces cerevisiae and the homologue, Eso1, in Schizosaccharomyces pombe. In both yeasts, these acetyltransferases are essential for cell viability. However, whereas nonacetylatable Smc3 mutants are lethal in S. cerevisiae, they are not in S. pombe We show that the lethality of a temperature-sensitive allele of eso1 (eso1-H17) is due to activation of the spindle assembly checkpoint (SAC) and is associated with premature centromere separation. The lack of cohesion at the centromeres does not correlate with Psm3 acetylation or cohesin levels at the centromeres, but is associated ith significantly reduced recruitment of the cohesin regulator Pds5. The SAC activation in this context is dependent on Smc5/6 function, which is required to remove cohesin from chromosome arms but not centromeres. The mitotic defects caused by Smc5/6 and Eso1 dysfunction are cosuppressed in double mutants. This identifies a novel function (or functions) for Eso1 and Smc5/6 at centromeres and extends the functional relationships between these SMC complexes.
Collapse
Affiliation(s)
- Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Omar J Jabado
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Doris Germain
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Matthew J O'Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
22
|
Onaka AT, Toyofuku N, Inoue T, Okita AK, Sagawa M, Su J, Shitanda T, Matsuyama R, Zafar F, Takahashi TS, Masukata H, Nakagawa T. Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res 2016; 44:10744-10757. [PMID: 27697832 PMCID: PMC5159554 DOI: 10.1093/nar/gkw874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere. However, how the HR enzyme prevents homology-mediated GCRs remains unclear. Here, we provide evidence that Rad51 with the aid of the Swi/Snf-type motor protein Rad54 promotes non-crossover recombination between centromere repeats to prevent isochromosome formation. Mutations in Rad51 and Rad54 epistatically increased the rates of isochromosome formation and chromosome loss. In sharp contrast, these mutations decreased gene conversion between inverted repeats in the centromere. Remarkably, analysis of recombinant DNAs revealed that rad51 and rad54 increase the proportion of crossovers. In the absence of Rad51, deletion of the structure-specific endonuclease Mus81 decreased both crossovers and isochromosomes, while the cdc27/pol32-D1 mutation, which impairs break-induced replication, did not. We propose that Rad51 and Rad54 promote non-crossover recombination between centromere repeats on the same chromatid, thereby suppressing crossover between non-allelic repeats on sister chromatids that leads to chromosomal rearrangements. Furthermore, we found that Rad51 and Rad54 are required for gene silencing in centromeres, suggesting that HR also plays a role in the structure and function of centromeres.
Collapse
Affiliation(s)
- Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Inoue
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Minami Sagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Shitanda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rei Matsuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuro S Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
23
|
Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 2015; 112:E6339-48. [PMID: 26578794 DOI: 10.1073/pnas.1511377112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.
Collapse
|
24
|
Sabatinos SA, Ranatunga NS, Yuan JP, Green MD, Forsburg SL. Replication stress in early S phase generates apparent micronuclei and chromosome rearrangement in fission yeast. Mol Biol Cell 2015; 26:3439-50. [PMID: 26246602 PMCID: PMC4591689 DOI: 10.1091/mbc.e15-05-0318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Unable to complete S phase, a fission yeast MCM mutant evades the mitotic checkpoint, causing aneuploidy, chromosome fragments, and bridges. The formation of apparent yeast micronuclei that are membrane bound is shown in real time; they develop DNA damage signals and may rejoin the parent nucleus. DNA replication stress causes genome mutations, rearrangements, and chromosome missegregation, which are implicated in cancer. We analyze a fission yeast mutant that is unable to complete S phase due to a defective subunit of the MCM helicase. Despite underreplicated and damaged DNA, these cells evade the G2 damage checkpoint to form ultrafine bridges, fragmented centromeres, and uneven chromosome segregations that resembles micronuclei. These micronuclei retain DNA damage markers and frequently rejoin with the parent nucleus. Surviving cells show an increased rate of mutation and chromosome rearrangement. This first report of micronucleus-like segregation in a yeast replication mutant establishes underreplication as an important factor contributing to checkpoint escape, abnormal chromosome segregation, and chromosome instability.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Ji-Ping Yuan
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Marc D Green
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
25
|
Abstract
Replication stress is a significant contributor to genome instability. Recent studies suggest that the centromere is particularly susceptible to replication stress and prone to rearrangements and genome damage, as well as chromosome loss. This effect is enhanced by loss of heterochromatin. The resulting changes in genetic organization, including chromosome loss, increased mutation and loss of heterozygosity, are important contributors to malignant growth.
Collapse
|
26
|
Emerging roles for centromere-associated proteins in DNA repair and genetic recombination. Biochem Soc Trans 2014; 41:1726-30. [PMID: 24256282 DOI: 10.1042/bst20130200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.
Collapse
|
27
|
Heterochromatin controls γH2A localization in Neurospora crassa. EUKARYOTIC CELL 2014; 13:990-1000. [PMID: 24879124 DOI: 10.1128/ec.00117-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to genotoxic stress, ATR and ATM kinases phosphorylate H2A in fungi and H2AX in animals on a C-terminal serine. The resulting modified histone, called γH2A, recruits chromatin-binding proteins that stabilize stalled replication forks or promote DNA double-strand-break repair. To identify genomic loci that might be prone to replication fork stalling or DNA breakage in Neurospora crassa, we performed chromatin immunoprecipitation (ChIP) of γH2A followed by next-generation sequencing (ChIP-seq). γH2A-containing nucleosomes are enriched in Neurospora heterochromatin domains. These domains are comprised of A·T-rich repetitive DNA sequences associated with histone H3 methylated at lysine-9 (H3K9me), the H3K9me-binding protein heterochromatin protein 1 (HP1), and DNA cytosine methylation. H3K9 methylation, catalyzed by DIM-5, is required for normal γH2A localization. In contrast, γH2A is not required for H3K9 methylation or DNA methylation. Normal γH2A localization also depends on HP1 and a histone deacetylase, HDA-1, but is independent of the DNA methyltransferase DIM-2. γH2A is globally induced in dim-5 mutants under normal growth conditions, suggesting that the DNA damage response is activated in these mutants in the absence of exogenous DNA damage. Together, these data suggest that heterochromatin formation is essential for normal DNA replication or repair.
Collapse
|
28
|
Mitra S, Gómez-Raja J, Larriba G, Dubey DD, Sanyal K. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans. PLoS Genet 2014; 10:e1004344. [PMID: 24762765 PMCID: PMC3998917 DOI: 10.1371/journal.pgen.1004344] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain centromere functioning by regulating CENP-ACaCse4 levels at the programmed stall sites of early replicating centromeres. The epigenetic mark of centromeres, CENP-A, is deposited in S phase in most yeasts by a mechanism that is not completely understood. Here, we identify two CEN7 flanking replication origins, ORI7-L1 and ORI7-RI, proximal to an early replicating centromere (CEN7) in a budding yeast Candida albicans. Replication forks starting from these origins stall randomly at CEN7 by the kinetochore that serves as a barrier to fork progression. We observe that centromeric fork stalling is reduced in absence of the HR proteins, Rad51 and Rad52, known to play a role in restarting stalled forks. Further, we demonstrate that Rad51 and Rad52 physically interact with CENP-ACaCse4in vivo. CENP-ACaCse4 levels are reduced in absence of Rad51 or Rad52, which results in disruption of the kinetochore structure. Here we propose a novel DNA replication-coupled mechanism mediated by HR proteins which epigenetically maintains centromere identity by regulating CENP-A deposition. A direct role of DNA repair proteins in centromere function offers insights into the mechanisms of centromere mis-regulation that leads to widespread aneuploidy in cancer cells.
Collapse
Affiliation(s)
- Sreyoshi Mitra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Jonathan Gómez-Raja
- Departamento Ciencias Biomédicas Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Germán Larriba
- Departamento Ciencias Biomédicas Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | | | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail:
| |
Collapse
|
29
|
Centromeric barrier disruption leads to mitotic defects in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:633-42. [PMID: 24531725 PMCID: PMC4059236 DOI: 10.1534/g3.114.010397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-ACnp1 protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability.
Collapse
|
30
|
Li PC, Green MD, Forsburg SL. Mutations disrupting histone methylation have different effects on replication timing in S. pombe centromere. PLoS One 2013; 8:e61464. [PMID: 23658693 PMCID: PMC3641051 DOI: 10.1371/journal.pone.0061464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast pericentromere comprises repetitive sequence elements packaged into heterchromatin marked by histone H3K9 methylation and Swi6 binding. Transient disruption of Swi6 during S phase allows a period of RNA synthesis which programs the RNAi machinery to maintain histone methylation. However, Swi6 is also required for early replication timing. We show that not only Swi6 but also the chromodomain protein Chp1 are delocalized during S phase. Different from loss of swi6, mutations that disrupt histone methylation in the centromere, chp1Δ and clr4Δ, undergo early DNA replication. However, timing is modestly delayed in RNAi mutants dcr1Δ or rdp1Δ, while hrr1Δ mutants resemble swi6Δ in their replication delay. Finally, we show that recruitment of RNA polymerase II in the centromere occurs independently of replication. These different effects indicate that replication timing is not simply linked to histone methylation.
Collapse
Affiliation(s)
- Pao-Chen Li
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Marc D. Green
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Susan L. Forsburg
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|