1
|
Rijal S, Mainali A, Acharya S, Bhattarai HK. Evolutionary history of the DNA repair protein, Ku, in eukaryotes and prokaryotes. PLoS One 2025; 20:e0308593. [PMID: 40131966 PMCID: PMC11936186 DOI: 10.1371/journal.pone.0308593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/21/2025] [Indexed: 03/27/2025] Open
Abstract
Ku is essential in non-homologous end-joining (NHEJ) across prokaryotes and eukaryotes, primarily in double-stranded breaks (DSBs) repair. It often presents as a multi-domain protein in eukaryotes, unlike their prokaryotic single-domain homologs. We systematically searched for Ku proteins across different domains of life. To elucidate the evolutionary history of the Ku protein, we constructed a maximum likelihood phylogenetic tree using Ku protein sequences from 100 representative eukaryotic, prokaryotic, and viral species. The resulting tree revealed a common node for eukaryotic Ku proteins, while viral and prokaryotic species clustered into a distinct clade. Our phylogenetic analysis reveals that the common ancestry of Ku70 and Ku80 likely resulted from a gene duplication event in the ancestral eukaryote. This inference is supported by BLASTp results, which indicate a close resemblance between archaeal Ku and eukaryotic Ku, particularly Ku70. The presence of both Ku protein paralogs in the Discoba group further supports the hypothesis that the gene duplication occurred early in eukaryotic evolution. It is plausible that archaea, which may have acted as intermediaries for Ku transfer, subsequently lost the Ku protein. Nonetheless, the extensive horizontal transfer of Ku among prokaryotes and its relatively higher prevalence in bacteria complicates our understanding of how Ku protein was inherited by early-branching eukaryotes.
Collapse
Affiliation(s)
- Sadikshya Rijal
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal.
| | - Ashmita Mainali
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal.
| | - Sandesh Acharya
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal.
| | | |
Collapse
|
2
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
3
|
Cao C, Gong W, Shuai Y, Rasouli S, Ge Q, Khan A, Dakic A, Putluri N, Shvets G, Zheng YL, Daneshdoust D, Mahyoob R, Li J, Liu X. Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex. Cell Biosci 2025; 15:30. [PMID: 40025596 PMCID: PMC11871756 DOI: 10.1186/s13578-025-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
The telomerase complex consists of a protein component (TERT), which has reverse transcriptase activity, and an RNA component (TERC), which serves as a template for telomere synthesis. Evidence is rapidly accumulating regarding the non-canonical functions of these components in both normal or diseased cells. An oligonucleotide-based drug, the first telomerase inhibitor, secured FDA approval in June 2024. We recently summarized the non-canonical functions of TERT in viral infections and cancer. In this review, we expand on these non-canonical functions of TERC beyond telomere maintenance. Specifically, we explore TERC's roles in cellular aging and senescence, immune regulation, genetic diseases, human cancer, as well as involvement in viral infections and host interactions. Finally, we discuss a transcription product of telomere repeats, TERRA, and explore strategies for targeting TERC as a therapeutic approach.
Collapse
Affiliation(s)
- Chongwen Cao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Weiyi Gong
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuanlong Shuai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Sara Rasouli
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Qianyun Ge
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anam Khan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, MD, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Danyal Daneshdoust
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rani Mahyoob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jenny Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Syed S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis Trf2 ensures genome stability by antagonizing Blm-mediated telomere recombination: Fine-tuning DNA repair factor activity at telomeres through opposing regulations. PLoS Genet 2024; 20:e1011515. [PMID: 39652599 DOI: 10.1371/journal.pgen.1011515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/26/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates. Consistent with a similar inhibitory activity in vivo, over-expression of Trf2 induces telomere shortening, just like deletion of blm, which is required for efficient telomere replication. While the loss of Trf2 engenders growth arrest and multiple telomere aberrations, these defects are fully suppressed by the concurrent deletion of blm or mre11 (but not other DNA repair factors). Over-expression of Blm alone triggers aberrant telomere recombination and the accumulation of aberrant telomere structures, which are blocked by concurrent Trf2 over-expression. Together, these findings highlight the suppression of Blm as a key protective mechanism of Trf2. Notably, U. maydis harbors another double-strand telomere-binding protein (Tay1), which promotes Blm activity to ensure efficient replication. We found that deletion of tay1 partially suppresses the telomere aberration of Trf2-depleted cells. Our results thus point to opposing regulation of Blm helicase by telomere proteins as a strategy for optimizing both telomere maintenance and protection. We also show that aberrant transcription of both telomere G- and C-strand is a recurrent phenotype of telomere mutants, underscoring another potential similarity between double strand breaks and de-protected telomeres.
Collapse
Affiliation(s)
- Shahrez Syed
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
5
|
Bayat L, Abbasi S, Balasuriya N, Schild-Poulter C. Critical residues in the Ku70 von Willebrand A domain mediate Ku interaction with the LigIV-XRCC4 complex in non-homologous end-joining. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119815. [PMID: 39151475 DOI: 10.1016/j.bbamcr.2024.119815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The Ku heterodimer (Ku70/Ku80) is central to the non-homologous end-joining (NHEJ) pathway. Ku binds to the broken DNA ends and promotes the assembly of the DNA repair complex. The N-terminal Ku70 von Willebrand A (vWA) domain is known to mediate protein-protein interactions important for the repair process. In particular, the D192 and D195 residues within helix 5 of the Ku70 vWA domain were shown to be essential for NHEJ function, although the precise role of these residues was not identified. Here, we set up a miniTurbo screening system to identify Ku70 D192/D195 residue-specific interactors in a conditional, human Ku70-knockout cell line in response to DNA damage. Using fusion protein constructs of Ku70 wild-type and mutant (D192A/D195R) with miniTurbo, we identified a number of candidate proximal interactors in response to DNA damage treatment, including DNA Ligase IV (LigIV), a known and essential NHEJ complex member. Interestingly, LigIV was enriched in our wildtype screen but not the Ku70 D192A/D195R screen, suggesting its interaction is disrupted by the mutation. Validation experiments demonstrated that the DNA damage-induced interaction between Ku70 and LigIV was disrupted by the Ku70 D192A/D195R mutations. Our findings provide greater detail about the interaction surface between the Ku70 vWA domain and LigIV and offer strong evidence that the D192 and D195 residues are important for NHEJ completion through an interaction with LigIV. Altogether, this work reveals novel potential proximal interactors of Ku in response to DNA damage and identifies Ku70 D192/D195 residues as essential for LigIV interaction with Ku during NHEJ.
Collapse
Affiliation(s)
- Laila Bayat
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
6
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
8
|
Sonmez C, Toia B, Eickhoff P, Matei AM, El Beyrouthy M, Wallner B, Douglas ME, de Lange T, Lottersberger F. DNA-PK controls Apollo's access to leading-end telomeres. Nucleic Acids Res 2024; 52:4313-4327. [PMID: 38407308 PMCID: PMC11077071 DOI: 10.1093/nar/gkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.
Collapse
Affiliation(s)
- Ceylan Sonmez
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Beatrice Toia
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Patrik Eickhoff
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Andreea Medeea Matei
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Michael El Beyrouthy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58 183, Sweden
| | - Max E Douglas
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, NY, NY 10021, USA
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| |
Collapse
|
9
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
10
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Zhang Y, Hou K, Tong J, Zhang H, Xiong M, Liu J, Jia S. The Altered Functions of Shelterin Components in ALT Cells. Int J Mol Sci 2023; 24:16830. [PMID: 38069153 PMCID: PMC10706665 DOI: 10.3390/ijms242316830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Telomeres are nucleoprotein complexes that cap the ends of eukaryotic linear chromosomes. Telomeric DNA is bound by shelterin protein complex to prevent telomeric chromosome ends from being recognized as damaged sites for abnormal repair. To overcome the end replication problem, cancer cells mostly preserve their telomeres by reactivating telomerase, but a minority (10-15%) of cancer cells use a homologous recombination-based pathway called alternative lengthening of telomeres (ALT). Recent studies have found that shelterin components play an important role in the ALT mechanism. The binding of TRF1, TRF2, and RAP1 to telomeres attenuates ALT activation, while the maintenance of ALT telomere requires TRF1 and TRF2. POT1 and TPP1 can also influence the occurrence of ALT. The elucidation of how shelterin regulates the initiation of ALT remains elusive. This review presents a comprehensive overview of the current findings on the regulation of ALT by shelterin components, aiming to enhance the insight into the altered functions of shelterin components in ALT cells and to identify potential targets for the treatment of ALT tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Z.); (K.H.); (J.T.); (H.Z.); (M.X.)
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Z.); (K.H.); (J.T.); (H.Z.); (M.X.)
| |
Collapse
|
12
|
Sienkiewicz M, Sroka K, Binienda A, Jurk D, Fichna J. A new face of old cells: An overview about the role of senescence and telomeres in inflammatory bowel diseases. Ageing Res Rev 2023; 91:102083. [PMID: 37802318 DOI: 10.1016/j.arr.2023.102083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Cellular senescence is a pivotal factor contributing to aging and the pathophysiology of age-related diseases. Despite the presence of inflammation and abnormal immune system function in both inflammatory bowel diseases (IBD) and senescence, the relationship between the two remains largely unexplored. Therefore, our study aimed to investigate the intricate connection between cellular senescence, telomeres, and IBD. The review highlights the presence of senescence markers, particularly p16 and p21, in IBD patients, suggesting their potential association with disease progression and mucosal inflammation. We emphasize the critical role of macrophages in eliminating senescent cells and how disturbance in effective clearance may contribute to persistent senescence and inflammation in IBD. Additionally, we shed light on the involvement of telomeres in IBD, as their dysfunction impairs enterocyte function and disrupts colonic barrier integrity, potentially exacerbating the pathogenesis of the disease. Targeting senescence and telomere dysfunctions holds promise for the development of innovative therapeutic approaches to mitigate intestinal inflammation and alleviate symptoms in IBD patients. By unraveling the precise role of senescence in IBD, we can pave the way for the discovery of novel therapeutic interventions that effectively address the underlying mechanisms of intestinal inflammation, offering hope for improved management and treatment of IBD patients.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Sroka
- Department of Family Medicine and Public Health, University of Opole, Opole, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Diana Jurk
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
14
|
Myler LR, Toia B, Vaughan CK, Takai K, Matei AM, Wu P, Paull TT, de Lange T, Lottersberger F. DNA-PK and the TRF2 iDDR inhibit MRN-initiated resection at leading-end telomeres. Nat Struct Mol Biol 2023; 30:1346-1356. [PMID: 37653239 PMCID: PMC10497418 DOI: 10.1038/s41594-023-01072-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Telomeres replicated by leading-strand synthesis lack the 3' overhang required for telomere protection. Surprisingly, resection of these blunt telomeres is initiated by the telomere-specific 5' exonuclease Apollo rather than the Mre11-Rad50-Nbs1 (MRN) complex, the nuclease that acts at DNA breaks. Without Apollo, leading-end telomeres undergo fusion, which, as demonstrated here, is mediated by alternative end joining. Here, we show that DNA-PK and TRF2 coordinate the repression of MRN at blunt mouse telomeres. DNA-PK represses an MRN-dependent long-range resection, while the endonuclease activity of MRN-CtIP, which could cleave DNA-PK off of blunt telomere ends, is inhibited in vitro and in vivo by the iDDR of TRF2. AlphaFold-Multimer predicts a conserved association of the iDDR with Rad50, potentially interfering with CtIP binding and MRN endonuclease activation. We propose that repression of MRN-mediated resection is a conserved aspect of telomere maintenance and represents an ancient feature of DNA-PK and the iDDR.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | - Beatrice Toia
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cara K Vaughan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | - Andreea M Matei
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA.
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Rinaldi C, Pizzul P, Casari E, Mangiagalli M, Tisi R, Longhese MP. The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 2023; 51:1783-1802. [PMID: 36762474 PMCID: PMC9976877 DOI: 10.1093/nar/gkad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2. Here, we provide evidence that Ku contributes to keep the DNA ends tethered to each other. The ku70-C85Y mutation, which increases Ku affinity for DNA and its persistence very close to the DSB ends, enhances DSB end-tethering and suppresses the end-tethering defect of sae2Δ cells. Impairing histone removal around DSBs either by eliminating Tel1 kinase activity or nucleosome remodelers enhances Ku persistence at DSBs and DSB bridging, suggesting that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As Ku provides a block to DSB resection, this Tel1 function can be important to regulate the mode by which DSBs are repaired.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
16
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
17
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
18
|
Hou K, Yu Y, Li D, Zhang Y, Zhang K, Tong J, Yang K, Jia S. Alternative Lengthening of Telomeres and Mediated Telomere Synthesis. Cancers (Basel) 2022; 14:cancers14092194. [PMID: 35565323 PMCID: PMC9105334 DOI: 10.3390/cancers14092194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Alternative lengthing of telomere (ALT) is an important mechanism for maintaining telomere length and cell proliferation in telomerase-negative tumor cells. However, the molecular mechanism of ALT is still poorly understood. ALT occurs in a wide range of tumor types and usually associated with a worse clinical consequence. Here, we review the recent findings of ALT mechanisms, which promise ALT could be a valuable drug target for clinical telomerase-negative tumor treatment. Abstract Telomeres are DNA–protein complexes that protect eukaryotic chromosome ends from being erroneously repaired by the DNA damage repair system, and the length of telomeres indicates the replicative potential of the cell. Telomeres shorten during each division of the cell, resulting in telomeric damage and replicative senescence. Tumor cells tend to ensure cell proliferation potential and genomic stability by activating telomere maintenance mechanisms (TMMs) for telomere lengthening. The alternative lengthening of telomeres (ALT) pathway is the most frequently activated TMM in tumors of mesenchymal and neuroepithelial origin, and ALT also frequently occurs during experimental cellular immortalization of mesenchymal cells. ALT is a process that relies on homologous recombination (HR) to elongate telomeres. However, some processes in the ALT mechanism remain poorly understood. Here, we review the most recent understanding of ALT mechanisms and processes, which may help us to better understand how the ALT pathway is activated in cancer cells and determine the potential therapeutic targets in ALT pathway-stabilized tumors.
Collapse
Affiliation(s)
- Kailong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China;
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
- First People’s Hospital of Yunnan Province, 157 Jinbi Road, Kunming 650032, China
| | - Yuyang Yu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Duda Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Yanduo Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Ke Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Jinkai Tong
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Kunxian Yang
- First People’s Hospital of Yunnan Province, 157 Jinbi Road, Kunming 650032, China
- Correspondence: (K.Y.); (S.J.)
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
- Correspondence: (K.Y.); (S.J.)
| |
Collapse
|
19
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Imran SAM, Yazid MD, Cui W, Lokanathan Y. The Intra- and Extra-Telomeric Role of TRF2 in the DNA Damage Response. Int J Mol Sci 2021; 22:ijms22189900. [PMID: 34576063 PMCID: PMC8470803 DOI: 10.3390/ijms22189900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
- Correspondence: ; Tel.: +603-9145-7704
| |
Collapse
|
21
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
22
|
Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021; 10:cells10071753. [PMID: 34359923 PMCID: PMC8305809 DOI: 10.3390/cells10071753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Collapse
|
23
|
Roisné-Hamelin F, Pobiega S, Jézéquel K, Miron S, Dépagne J, Veaute X, Busso D, Du MHL, Callebaut I, Charbonnier JB, Cuniasse P, Zinn-Justin S, Marcand S. Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun 2021; 12:2763. [PMID: 33980827 PMCID: PMC8115599 DOI: 10.1038/s41467-021-23035-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Sabrina Pobiega
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Kévin Jézéquel
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Simona Miron
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jordane Dépagne
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Xavier Veaute
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie-Hélène Le Du
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Cuniasse
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Marcand
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| |
Collapse
|
24
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
25
|
Pańczyszyn A, Boniewska-Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair (Amst) 2020; 95:102956. [PMID: 32937289 DOI: 10.1016/j.dnarep.2020.102956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for triggering the signaling of DNA damage response (DDR). Telomerase subunits in post-mitotic cells translocate between the nucleus, cytoplasm and mitochondria, participating in the regulation of their activity. Among other things, they contribute to the reduction of reactive oxygen species generation, which leads to telomere dysfunction and, consequently, senescence. Some proteins of the shelterin complex also play a protective role by inhibiting senescence-initiating kinases and limiting ROS production by mitochondria.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Ewa Boniewska-Bernacka
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Anna Goc
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| |
Collapse
|
26
|
de Krijger I, van der Torre J, Peuscher MH, Eder M, Jacobs JJL. H3K36 dimethylation by MMSET promotes classical non-homologous end-joining at unprotected telomeres. Oncogene 2020; 39:4814-4827. [PMID: 32472076 PMCID: PMC7299843 DOI: 10.1038/s41388-020-1334-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The epigenetic environment plays an important role in DNA damage recognition and repair, both at DNA double-strand breaks and at deprotected telomeres. To increase understanding on how DNA damage responses (DDR) at deprotected telomeres are regulated by modification and remodeling of telomeric chromatin we screened 38 methyltransferases for their ability to promote telomere dysfunction-induced genomic instability. As top hit we identified MMSET, a histone methyltransferase (HMT) causally linked to multiple myeloma and Wolf-Hirschhorn syndrome. We show that MMSET promotes non-homologous end-joining (NHEJ) at deprotected telomeres through Ligase4-dependent classical NHEJ, and does not contribute to Ligase3-dependent alternative NHEJ. Moreover, we show that this is dependent on the catalytic activity of MMSET, enabled by its SET-domain. Indeed, in absence of MMSET H3K36-dimethylation (H3K36me2) decreases, both globally and at subtelomeric regions. Interestingly, the level of MMSET-dependent H3K36me2 directly correlates with NHEJ-efficiency. We show that MMSET depletion does not impact on recognition of deprotected telomeres by the DDR-machinery or on subsequent recruitment of DDR-factors acting upstream or at the level of DNA repair pathway choice. Our data are most consistent with an important role for H3K36me2 in more downstream steps of the DNA repair process. Moreover, we find additional H3K36me2-specific HMTs to contribute to NHEJ at deprotected telomeres, further emphasizing the importance of H3K36me2 in DNA repair.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jaco van der Torre
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marieke H Peuscher
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mathias Eder
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
28
|
Sui J, Zhang S, Chen BPC. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 2020; 25:2. [PMID: 31988640 PMCID: PMC6969447 DOI: 10.1186/s11658-020-0199-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on DNA-dependent protein kinase (DNA-PK), which is the key regulator of canonical non-homologous end-joining (NHEJ), the predominant mechanism of DNA double-strand break (DSB) repair in mammals. DNA-PK consists of the DNA-binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs. They assemble at DNA ends, forming the active DNA-PK complex, which initiates NHEJ-mediated DSB repair. Paradoxically, both Ku and DNA-PKcs are associated with telomeres, and they play crucial roles in protecting the telomere against fusions. Herein, we discuss possible mechanisms and contributions of Ku and DNA-PKcs in telomere regulation.
Collapse
Affiliation(s)
- Jiangdong Sui
- 1Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Shichuan Zhang
- 2Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin P C Chen
- 3Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9187 USA
| |
Collapse
|
29
|
CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun 2019; 10:3884. [PMID: 31467287 PMCID: PMC6715699 DOI: 10.1038/s41467-019-11785-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond. Conversion of dermal fibroblasts into Cancer Associated Fibroblasts (CAFs) can play an important role in keratinocyte tumour development. Here the authors reveal that CSL plays a role in maintenance of telomeres and genomic integrity in both dermal fibroblasts and CAFs.
Collapse
|
30
|
Lemon LD, Morris DK, Bertuch AA. Loss of Ku's DNA end binding activity affects telomere length via destabilizing telomere-bound Est1 rather than altering TLC1 homeostasis. Sci Rep 2019; 9:10607. [PMID: 31337791 PMCID: PMC6650470 DOI: 10.1038/s41598-019-46840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae telomerase, which maintains telomere length, is comprised of an RNA component, TLC1, the reverse transcriptase, Est2, and regulatory subunits, including Est1. The Yku70/Yku80 (Ku) heterodimer, a DNA end binding (DEB) protein, also contributes to telomere length maintenance. Ku binds TLC1 and telomere ends in a mutually exclusive fashion, and is required to maintain levels and nuclear localization of TLC1. Ku also interacts with Sir4, which localizes to telomeres. Here we sought to determine the role of Ku's DEB activity in telomere length maintenance by utilizing yku70-R456E mutant strains, in which Ku has reduced DEB and telomere association but proficiency in TLC1 and Sir4 binding, and TLC1 nuclear retention. Telomere lengths in a yku70-R456E strain were nearly as short as those in yku∆ strains and shorter than in strains lacking either Sir4, Ku:Sir4 interaction, or Ku:TLC1 interaction. TLC1 levels were decreased in the yku70-R456E mutant, yet overexpression of TLC1 failed to restore telomere length. Reduced DEB activity did not impact Est1's ability to associate with telomerase but did result in decreased association of Est1 with the telomere. These findings suggest Ku's DEB activity maintains telomere length homeostasis by preserving Est1's interaction at the telomere rather than altering TLC1 levels.
Collapse
Affiliation(s)
- Laramie D Lemon
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danna K Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Maekawa T, Liu B, Nakai D, Yoshida K, Nakamura KI, Yasukawa M, Koike M, Takubo K, Chatton B, Ishikawa F, Masutomi K, Ishii S. ATF7 mediates TNF-α-induced telomere shortening. Nucleic Acids Res 2019; 46:4487-4504. [PMID: 29490055 PMCID: PMC5961373 DOI: 10.1093/nar/gky155] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
Telomeres maintain the integrity of chromosome ends and telomere length is an important marker of aging. The epidemiological studies suggested that many types of stress including psychosocial stress decrease telomere length. However, it remains unknown how various stresses induce telomere shortening. Here, we report that the stress-responsive transcription factor ATF7 mediates TNF-α–induced telomere shortening. ATF7 and telomerase, an enzyme that elongates telomeres, are localized on telomeres via interactions with the Ku complex. In response to TNF-α, which is induced by various stresses including psychological stress, ATF7 was phosphorylated by p38, leading to the release of ATF7 and telomerase from telomeres. Thus, a decrease of ATF7 and telomerase on telomeres in response to stress causes telomere shortening, as observed in ATF7-deficient mice. These findings give credence to the idea that various types of stress might shorten telomere.
Collapse
Affiliation(s)
- Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Binbin Liu
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Nakai
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
32
|
Doksani Y. The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function. Genes (Basel) 2019; 10:genes10040318. [PMID: 31022960 PMCID: PMC6523756 DOI: 10.3390/genes10040318] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Telomeric repeats, coated by the shelterin complex, prevent inappropriate activation of the DNA damage response at the ends of linear chromosomes. Shelterin has evolved distinct solutions to protect telomeres from different aspects of the DNA damage response. These solutions include formation of t-loops, which can sequester the chromosome terminus from DNA-end sensors and inhibition of key steps in the DNA damage response. While blocking the DNA damage response at chromosome ends, telomeres make wide use of many of its players to deal with exogenous damage and replication stress. This review focuses on the interplay between the end-protection functions and the response to DNA damage occurring inside the telomeric repeats, as well as on the consequences that telomere damage has on telomere structure and function.
Collapse
Affiliation(s)
- Ylli Doksani
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
33
|
Multicomponent assemblies in DNA-double-strand break repair by NHEJ. Curr Opin Struct Biol 2019; 55:154-160. [DOI: 10.1016/j.sbi.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022]
|
34
|
Giant tortoise genomes provide insights into longevity and age-related disease. Nat Ecol Evol 2018; 3:87-95. [PMID: 30510174 PMCID: PMC6314442 DOI: 10.1038/s41559-018-0733-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.
Collapse
|
35
|
Nelson ND, Dodson LM, Escudero L, Sukumar AT, Williams CL, Mihalek I, Baldan A, Baird DM, Bertuch AA. The C-Terminal Extension Unique to the Long Isoform of the Shelterin Component TIN2 Enhances Its Interaction with TRF2 in a Phosphorylation- and Dyskeratosis Congenita Cluster-Dependent Fashion. Mol Cell Biol 2018; 38:e00025-18. [PMID: 29581185 PMCID: PMC5974431 DOI: 10.1128/mcb.00025-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2018] [Indexed: 01/08/2023] Open
Abstract
TIN2 is central to the shelterin complex, linking the telomeric proteins TRF1 and TRF2 with TPP1/POT1. Mutations in TINF2, which encodes TIN2, that are found in dyskeratosis congenita (DC) result in very short telomeres and cluster in a region shared by the two TIN2 isoforms, TIN2S (short) and TIN2L (long). Here we show that TIN2L, but not TIN2S, is phosphorylated. TRF2 interacts more with TIN2L than TIN2S, and both the DC cluster and phosphorylation promote this enhanced interaction. The binding of TIN2L, but not TIN2S, is affected by TRF2-F120, which is also required for TRF2's interaction with end processing factors such as Apollo. Conversely, TRF1 interacts more with TIN2S than with TIN2L. A DC-associated mutation further reduces TIN2L-TRF1, but not TIN2S-TRF1, interaction. Cells overexpressing TIN2L or phosphomimetic TIN2L are permissive to telomere elongation, whereas cells overexpressing TIN2S or phosphodead TIN2L are not. Telomere lengths are unchanged in cell lines in which TIN2L expression has been eliminated by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated mutation. These results indicate that TIN2 isoforms are biochemically and functionally distinguishable and that shelterin composition could be fundamentally altered in patients with TINF2 mutations.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lois M Dodson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Escudero
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ann T Sukumar
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher L Williams
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ivana Mihalek
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Alessandro Baldan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alison A Bertuch
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in Saccharomyces cerevisiae. Genetics 2018; 209:115-128. [PMID: 29500182 DOI: 10.1534/genetics.117.300672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
The Ku heterodimer acts centrally in nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB). Saccharomyces cerevisiae Ku, like mammalian Ku, binds and recruits NHEJ factors to DSB ends. Consequently, NHEJ is virtually absent in yeast Ku null (yku70∆ or yku80∆) strains. Previously, we unexpectedly observed imprecise NHEJ proficiency in a yeast Ku mutant with impaired DNA end-binding (DEB). However, how DEB impairment supported imprecise NHEJ was unknown. Here, we found imprecise NHEJ proficiency to be a feature of a panel of DEB-impaired Ku mutants and that DEB impairment resulted in a deficiency in precise NHEJ. These results suggest that DEB-impaired Ku specifically promotes error-prone NHEJ. Epistasis analysis showed that classical NHEJ factors, as well as novel and previously characterized NHEJ-specific residues of Ku, are required for the distinct error-prone repair in a Ku DEB mutant. However, sequencing of repair junctions revealed that imprecise repair in Ku DEB mutants was almost exclusively characterized by small deletions, in contrast to the majority of insertions that define imprecise repair in wild-type strains. Notably, while sequencing indicated a lack of Pol4-dependent insertions at the site of repair, Pol2 exonuclease activity, which mediates small deletions in NHEJ, contributed to imprecise NHEJ in a Ku DEB mutant. The deletions were smaller than in Ku-independent microhomology-mediated end-joining (MMEJ) and were neither promoted by Mre11 nuclease activity nor Sae2 Thus, the quality of Ku's engagement at the DNA end influences end-processing during NHEJ and DEB impairment unmasks a Ku-dependent error-prone pathway of end-joining distinct from MMEJ.
Collapse
|
37
|
Muraki K, Murnane JP. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet Syst 2017; 92:135-152. [PMID: 29162774 DOI: 10.1266/ggs.17-00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In mammals, DNA double-strand breaks (DSBs) are primarily repaired by classical non-homologous end joining (C-NHEJ), although homologous recombination repair and alternative NHEJ (A-NHEJ), which involve DSB processing, can also occur. These pathways are tightly regulated to maintain chromosome integrity. The ends of chromosomes, called telomeres, contain telomeric DNA that forms a cap structure in cooperation with telomeric proteins to prevent the activation of the DNA damage response and chromosome fusion at chromosome termini. Telomeres and subtelomeric regions are poor substrates for DNA replication; therefore, regions near telomeres are prone to replication fork stalling and chromosome breakage. Moreover, DSBs near telomeres are poorly repaired. As a result, when DSBs occur near telomeres in normal cells, the cells stop proliferating, while in cancer cells, subtelomeric DSBs induce rearrangements due to the absence of cell cycle checkpoints. The sensitivity of subtelomeric regions to DSBs is due to the improper regulation of processing, because although C-NHEJ is functional at subtelomeric DSBs, excessive processing results in an increased frequency of large deletions and chromosome rearrangements involving A-NHEJ.
Collapse
Affiliation(s)
- Keiko Muraki
- Institute for Protein Research, Osaka University.,Department of Radiation Oncology, University of California, San Francisco
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco
| |
Collapse
|
38
|
Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Rep 2017; 17:1646-1656. [PMID: 27806302 DOI: 10.1016/j.celrep.2016.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 01/29/2023] Open
Abstract
Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination contributes to repair, leading to increased telomere length heterogeneity typical of the alternative lengthening of telomeres (ALT) pathway. Furthermore, cells accumulate extra chromosomal telomeric signals (ECTS), a second hallmark of ALT. Telomere-internal DSBs are also repaired by a PARP1- and Ligase3-dependent reaction, suggesting alternative non-homologous end-joining (alt-NHEJ), which relies on microhomology at DSBs. However, as resected telomere-internal DSBs have perfect homology, their PARP1/Lig3-dependent end-joining may be more akin to single strand break repair. We conclude that shelterin does not repress ATM kinase signaling or DSB repair at telomere-internal sites, thereby allowing DNA repair to maintain telomere integrity.
Collapse
|
39
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
40
|
Valuchova S, Fulnecek J, Prokop Z, Stolt-Bergner P, Janouskova E, Hofr C, Riha K. Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer. THE PLANT CELL 2017; 29:1533-1545. [PMID: 28584163 PMCID: PMC5502450 DOI: 10.1105/tpc.17.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/01/2017] [Accepted: 06/02/2017] [Indexed: 05/15/2023]
Abstract
Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku's requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries.
Collapse
Affiliation(s)
- Sona Valuchova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Gregor Mendel Institute, Austrian Academy of Sciences (OEAW), Vienna Biocenter, 1030 Vienna, Austria
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Eliska Janouskova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Ctirad Hofr
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Yalçin Z, Selenz C, Jacobs JJL. Ubiquitination and SUMOylation in Telomere Maintenance and Dysfunction. Front Genet 2017; 8:67. [PMID: 28588610 PMCID: PMC5440461 DOI: 10.3389/fgene.2017.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Telomeres are essential nucleoprotein structures at linear chromosomes that maintain genome integrity by protecting chromosome ends from being recognized and processed as damaged DNA. In addition, they limit the cell’s proliferative capacity, as progressive loss of telomeric DNA during successive rounds of cell division eventually causes a state of telomere dysfunction that prevents further cell division. When telomeres become critically short, the cell elicits a DNA damage response resulting in senescence, apoptosis or genomic instability, thereby impacting on aging and tumorigenesis. Over the past years substantial progress has been made in understanding the role of post-translational modifications in telomere-related processes, including telomere maintenance, replication and dysfunction. This review will focus on recent findings that establish an essential role for ubiquitination and SUMOylation at telomeres.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Carolin Selenz
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Jacqueline J L Jacobs
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| |
Collapse
|
42
|
Treating Cancer by Targeting Telomeres and Telomerase. Antioxidants (Basel) 2017; 6:antiox6010015. [PMID: 28218725 PMCID: PMC5384178 DOI: 10.3390/antiox6010015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Telomerase is expressed in more than 85% of cancer cells. Tumor cells with metastatic potential may have a high telomerase activity, allowing cells to escape from the inhibition of cell proliferation due to shortened telomeres. Human telomerase primarily consists of two main components: hTERT, a catalytic subunit, and hTR, an RNA template whose sequence is complimentary to the telomeric 5′-dTTAGGG-3′ repeat. In humans, telomerase activity is typically restricted to renewing tissues, such as germ cells and stem cells, and is generally absent in normal cells. While hTR is constitutively expressed in most tissue types, hTERT expression levels are low enough that telomere length cannot be maintained, which sets a proliferative lifespan on normal cells. However, in the majority of cancers, telomerase maintains stable telomere length, thereby conferring cell immortality. Levels of hTERT mRNA are directly related to telomerase activity, thereby making it a more suitable therapeutic target than hTR. Recent data suggests that stabilization of telomeric G-quadruplexes may act to indirectly inhibit telomerase action by blocking hTR binding. Telomeric DNA has the propensity to spontaneously form intramolecular G-quadruplexes, four-stranded DNA secondary structures that are stabilized by the stacking of guanine residues in a planar arrangement. The functional roles of telomeric G-quadruplexes are not completely understood, but recent evidence suggests that they can stall the replication fork during DNA synthesis and inhibit telomere replication by preventing telomerase and related proteins from binding to the telomere. Long-term treatment with G-quadruplex stabilizers induces a gradual reduction in the length of the G-rich 3’ end of the telomere without a reduction of the total telomere length, suggesting that telomerase activity is inhibited. However, inhibition of telomerase, either directly or indirectly, has shown only moderate success in cancer patients. Another promising approach of targeting the telomere is the use of guanine-rich oligonucleotides (GROs) homologous to the 3’ telomere overhang sequence (T-oligos). T-oligos, particularly a specific 11-base oligonucleotide (5’-dGTTAGGGTTAG-3’) called T11, have been shown to induce DNA damage responses (DDRs) such as senescence, apoptosis, and cell cycle arrest in numerous cancer cell types with minimal or no cytostatic effects in normal, non-transformed cells. As a result, T-oligos and other GROs are being investigated as prospective anticancer therapeutics. Interestingly, the DDRs induced by T-oligos in cancer cells are similar to the effects seen after progressive telomere degradation in normal cells. The loss of telomeres is an important tumor suppressor mechanism that is commonly absent in transformed malignant cells, and hence, T-oligos have garnered significant interest as a novel strategy to combat cancer. However, little is known about their mechanism of action. In this review, we discuss the current understanding of how T-oligos exert their antiproliferative effects in cancer cells and their role in inhibition of telomerase. We also discuss the current understanding of telomerase in cancer and various therapeutic targets related to the telomeres and telomerase.
Collapse
|
43
|
Fell VL, Walden EA, Hoffer SM, Rogers SR, Aitken AS, Salemi LM, Schild-Poulter C. Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Sci Rep 2016; 6:37194. [PMID: 27849008 PMCID: PMC5111114 DOI: 10.1038/srep37194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in Ku70-deficient mouse embryonic fibroblasts (MEFs) triggered cell cycle arrest at multiple checkpoints and altered expression of several cell cycle regulators in absence of DNA damage. Cells expressing Ku70 S155D exhibited a constitutive DNA damage response, including ATM activation, H2AX phosphorylation and 53BP1 foci formation. Ku70 S155D was found to interact with Aurora B and to have an inhibitory effect on Aurora B kinase activity. Lastly, we demonstrate that Ku and Aurora B interact following ionizing radiation treatment and that Aurora B inhibition in response to DNA damage is dependent upon Ku70 S155 phosphorylation. This uncovers a new pathway where Ku may relay signaling to Aurora B to enforce cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Victoria L Fell
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elizabeth A Walden
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah M Hoffer
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephanie R Rogers
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Amelia S Aitken
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Louisa M Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
44
|
Abstract
Telomeres at chromosome ends are nucleoprotein structures consisting of tandem TTAGGG repeats and a complex of proteins termed shelterin. DNA damage and repair at telomeres is uniquely influenced by the ability of telomeric DNA to form alternate structures including loops and G-quadruplexes, coupled with the ability of shelterin proteins to interact with and regulate enzymes in every known DNA repair pathway. The role of shelterin proteins in preventing telomeric ends from being falsely recognized and processed as DNA double strand breaks is well established. Here we focus instead on recent developments in understanding the roles of shelterin proteins and telomeric DNA sequence and structure in processing genuine damage at telomeres induced by endogenous and exogenous DNA damage agents. We will highlight advances in double strand break repair, base excision repair and nucleotide excision repair at telomeres, and will discuss important questions remaining in the field.
Collapse
Affiliation(s)
- Elise Fouquerel
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Dhvani Parikh
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Patricia Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
45
|
Wang Z, Lieberman PM. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol 2016; 13:690-5. [PMID: 27351774 DOI: 10.1080/15476286.2016.1203503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.
Collapse
Affiliation(s)
- Zhuo Wang
- a The Wistar Institute , Philadelphia , PA , USA.,b University of the Sciences in Philadelphia , Philadelphia , PA , USA
| | | |
Collapse
|
46
|
Stop pulling my strings - what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 2016; 17:364-78. [PMID: 27165790 DOI: 10.1038/nrm.2016.43] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have evolved specialized mechanisms to sense and repair double-strand breaks (DSBs) to maintain genomic stability. However, in certain cases, the activity of these pathways can lead to aberrant DNA repair, genomic instability and tumorigenesis. One such case is DNA repair at the natural ends of linear chromosomes, known as telomeres, which can lead to chromosome-end fusions. Here, we review data obtained over the past decade and discuss the mechanisms that protect mammalian chromosome ends from the DNA damage response. We also discuss how telomere research has helped to uncover key steps in DSB repair. Last, we summarize how dysfunctional telomeres and the ensuing genomic instability drive the progression of cancer.
Collapse
|
47
|
Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol 2016; 22:859-66. [PMID: 26581520 DOI: 10.1038/nsmb.3092] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/23/2015] [Indexed: 12/28/2022]
Abstract
Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the 'end-protection problem' by inhibiting multiple DNA damage-response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation.
Collapse
|
48
|
Berthelot V, Mouta-Cardoso G, Hégarat N, Guillonneau F, François JC, Giovannangeli C, Praseuth D, Rusconi F. The human DNA ends proteome uncovers an unexpected entanglement of functional pathways. Nucleic Acids Res 2016; 44:4721-33. [PMID: 26921407 PMCID: PMC4889927 DOI: 10.1093/nar/gkw121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 01/06/2023] Open
Abstract
DNA ends get exposed in cells upon either normal or dysfunctional cellular processes or molecular events. Telomeres need to be protected by the shelterin complex to avoid junctions occurring between chromosomes while failing topoisomerases or clustered DNA damage processing may produce double-strand breaks, thus requiring swift repair to avoid cell death. The rigorous study of the great many proteins involved in the maintenance of DNA integrity is a challenging task because of the innumerous unspecific electrostatic and/or hydrophobic DNA—protein interactions that arise due to the chemical nature of DNA. We devised a technique that discriminates the proteins recruited specifically at DNA ends from those that bind to DNA because of a generic affinity for the double helix. Our study shows that the DNA ends proteome comprises proteins of an unexpectedly wide functional spectrum, ranging from DNA repair to ribosome biogenesis and cytoskeleton, including novel proteins of undocumented function. A global mapping of the identified proteome on published DNA repair protein networks demonstrated the excellent specificity and functional coverage of our purification technique. Finally, the native nucleoproteic complexes that assembled specifically onto DNA ends were shown to be endowed with a highly efficient DNA repair activity.
Collapse
Affiliation(s)
- Vivien Berthelot
- Laboratoire de chimie physique, UMR CNRS 8000, University of Paris-Sud, F-91400 Orsay, France
| | - Gildas Mouta-Cardoso
- Structure et Instabilité des Génomes, INSERM U1154, UMR CNRS/MNHN 7196, F-75005 Paris, France
| | - Nadia Hégarat
- Structure et Instabilité des Génomes, INSERM U1154, UMR CNRS/MNHN 7196, F-75005 Paris, France
| | - François Guillonneau
- Plateforme de spectrométrie de masse 3P5, Institut Cochin, F-75014 Paris, France
| | - Jean-Christophe François
- Inserm and Sorbonne Universities, UPMC, UMR_S 938, Research Center Saint-Antoine, F-75012 Paris, France
| | - Carine Giovannangeli
- Structure et Instabilité des Génomes, INSERM U1154, UMR CNRS/MNHN 7196, F-75005 Paris, France
| | - Danièle Praseuth
- Structure et Instabilité des Génomes, INSERM U1154, UMR CNRS/MNHN 7196, F-75005 Paris, France
| | - Filippo Rusconi
- Laboratoire de chimie physique, UMR CNRS 8000, University of Paris-Sud, F-91400 Orsay, France
| |
Collapse
|
49
|
Feuerhahn S, Chen LY, Luke B, Porro A. No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci 2015; 40:275-85. [DOI: 10.1016/j.tibs.2015.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
|
50
|
Zahn KE, Averill AM, Aller P, Wood RD, Doublié S. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 2015; 22:304-11. [PMID: 25775267 PMCID: PMC4385486 DOI: 10.1038/nsmb.2993] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/13/2015] [Indexed: 01/14/2023]
Abstract
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break-inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Richard D Wood
- Department of Epigenetics &Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|