1
|
Hauptman G, Reichert MC, Abdal Rhida MA, Evans TA. Characterization of enhancer fragments in Drosophila robo2. Fly (Austin) 2022; 16:312-346. [PMID: 36217698 PMCID: PMC9559326 DOI: 10.1080/19336934.2022.2126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023] Open
Abstract
Receptor proteins of the Roundabout (Robo) family regulate axon guidance decisions during nervous system development. Among the three Drosophila robo family genes (robo1, robo2 and robo3), robo2 displays a dynamic expression pattern and regulates multiple axon guidance outcomes, including preventing midline crossing in some axons, promoting midline crossing in others, forming lateral longitudinal axon pathways, and regulating motor axon guidance. The identity and location of enhancer elements regulating robo2's complex and dynamic expression pattern in different neural cell types are unknown. Here, we characterize a set of 17 transgenic lines expressing GAL4 under the control of DNA sequences derived from noncoding regions in and around robo2, to identify enhancers controlling specific aspects of robo2 expression in the embryonic ventral nerve cord. We identify individual fragments that confer expression in specific cell types where robo2 is known to function, including early pioneer neurons, midline glia and lateral longitudinal neurons. Our results indicate that robo2's dynamic expression pattern is specified by a combination of enhancer elements that are active in different subsets of cells. We show that robo2's expression in lateral longitudinal axons represents two genetically separable subsets of neurons, and compare their axon projections with each other and with Fasciclin II (FasII), a commonly used marker of longitudinal axon pathways. In addition, we provide a general description of each fragment's expression in embryonic tissues outside of the nervous system, to serve as a resource for other researchers interested in robo2 expression and its functional roles outside the central nervous system.
Collapse
Affiliation(s)
- Gina Hauptman
- Department of Biological Sciences, University of Arkansas, Fayetteville
| | - Marie C. Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville
| | - Muna A. Abdal Rhida
- Department of Biological Sciences, University of Arkansas, Fayetteville
- Department of Biology, Wasit University, Iraq
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville
| |
Collapse
|
2
|
Surgical management of Currarino syndrome in elderly patient with infected pre-sacral mass: Technical nuances and review of literature. Clin Neurol Neurosurg 2022; 222:107470. [DOI: 10.1016/j.clineuro.2022.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
|
3
|
Solomon E, Davis-Anderson K, Hovde B, Micheva-Viteva S, Harris JF, Twary S, Iyer R. Global transcriptome profile of the developmental principles of in vitro iPSC-to-motor neuron differentiation. BMC Mol Cell Biol 2021; 22:13. [PMID: 33602141 PMCID: PMC7893891 DOI: 10.1186/s12860-021-00343-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00343-z.
Collapse
Affiliation(s)
- Emilia Solomon
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | - Blake Hovde
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | | | - Scott Twary
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Rashi Iyer
- Los Alamos National Laboratory, Analytics, Intelligence, and Technology Division, Los Alamos, NM, USA.
| |
Collapse
|
4
|
Pollitt SL, Myers KR, Yoo J, Zheng JQ. LIM and SH3 protein 1 localizes to the leading edge of protruding lamellipodia and regulates axon development. Mol Biol Cell 2020; 31:2718-2732. [PMID: 32997597 PMCID: PMC7927181 DOI: 10.1091/mbc.e20-06-0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton drives cell motility and is essential for neuronal development and function. LIM and SH3 protein 1 (LASP1) is a unique actin-binding protein that is expressed in a wide range of cells including neurons, but its roles in cellular motility and neuronal development are not well understood. We report that LASP1 is expressed in rat hippocampus early in development, and this expression is maintained through adulthood. High-resolution imaging reveals that LASP1 is selectively concentrated at the leading edge of lamellipodia in migrating cells and axonal growth cones. This local enrichment of LASP1 is dynamically associated with the protrusive activity of lamellipodia, depends on the barbed ends of actin filaments, and requires both the LIM domain and the nebulin repeats of LASP1. Knockdown of LASP1 in cultured rat hippocampal neurons results in a substantial reduction in axonal outgrowth and arborization. Finally, loss of the Drosophila homologue Lasp from a subset of commissural neurons in the developing ventral nerve cord produces defasciculated axon bundles that do not reach their targets. Together, our data support a novel role for LASP1 in actin-based lamellipodial protrusion and establish LASP1 as a positive regulator of both in vitro and in vivo axon development.
Collapse
Affiliation(s)
| | | | - Jin Yoo
- Emory College, Emory University, Atlanta, GA 30322
| | - James Q Zheng
- Department of Cell Biology and.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, and
| |
Collapse
|
5
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
McCorkindale AL, Wahle P, Werner S, Jungreis I, Menzel P, Shukla CJ, Abreu RLP, Irizarry RA, Meyer IM, Kellis M, Zinzen RP. A gene expression atlas of embryonic neurogenesis in Drosophila reveals complex spatiotemporal regulation of lncRNAs. Development 2019; 146:dev.175265. [PMID: 30923056 PMCID: PMC6451322 DOI: 10.1242/dev.175265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
Cell type specification during early nervous system development in Drosophila melanogaster requires precise regulation of gene expression in time and space. Resolving the programs driving neurogenesis has been a major challenge owing to the complexity and rapidity with which distinct cell populations arise. To resolve the cell type-specific gene expression dynamics in early nervous system development, we have sequenced the transcriptomes of purified neurogenic cell types across consecutive time points covering crucial events in neurogenesis. The resulting gene expression atlas comprises a detailed resource of global transcriptome dynamics that permits systematic analysis of how cells in the nervous system acquire distinct fates. We resolve known gene expression dynamics and uncover novel expression signatures for hundreds of genes among diverse neurogenic cell types, most of which remain unstudied. We also identified a set of conserved long noncoding RNAs (lncRNAs) that are regulated in a tissue-specific manner and exhibit spatiotemporal expression during neurogenesis with exquisite specificity. lncRNA expression is highly dynamic and demarcates specific subpopulations within neurogenic cell types. Our spatiotemporal transcriptome atlas provides a comprehensive resource for investigating the function of coding genes and noncoding RNAs during crucial stages of early neurogenesis. Summary: DIV-MARIS, an adapted technique for examining stage- and cell type-specific gene expression, reveals a complex network of mRNAs and lncRNAs expressed in specific cell types during early Drosophila embryonic nervous system development.
Collapse
Affiliation(s)
- Alexandra L McCorkindale
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany .,Biofrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Philipp Wahle
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| | - Sascha Werner
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Menzel
- Laboratory for Bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| | - Chinmay J Shukla
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Rúben Lopes Pereira Abreu
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| | | | - Irmtraud M Meyer
- Laboratory for Bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany.,Freie Universität, Institute of Biochemistry, Department of Biology, Chemistry, Pharmacy, Thielallee 63, Berlin 14195, Germany
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Laboratory for Bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| | - Robert P Zinzen
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| |
Collapse
|
7
|
Yang C, Li S, Li X, Li H, Li Y, Zhang C, Lin J. Effect of sonic hedgehog on motor neuron positioning in the spinal cord during chicken embryonic development. J Cell Mol Med 2019; 23:3549-3562. [PMID: 30834718 PMCID: PMC6484327 DOI: 10.1111/jcmm.14254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
Collapse
Affiliation(s)
- Ciqing Yang
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Shuanqing Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Xiaoying Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang, Malaysia
| | - Yunxiao Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Chen Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Juntang Lin
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects. Proc Natl Acad Sci U S A 2018; 115:E10748-E10757. [PMID: 30348793 PMCID: PMC6233066 DOI: 10.1073/pnas.1807206115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It remains unclear how the structural properties of polyglutamine (polyQ) proteins, which underlie several neurodegenerative disorders, including Huntington’s disease and spinocerebellar ataxias (SCAs), translate into the toxicity of these proteins. Here, we demonstrate that coiled-coil structures in expanded polyQ regions of SCA type 3 (SCA3) proteins cause dendrite defects in Drosophila neurons, as well as behavioral abnormalities. Moreover, interactions of SCA3 with Foxo mediated by coiled-coil domains of these two proteins resulted in functional impairment of this transcription factor, whereas its overexpression significantly rescued the SCA3-induced defects. Our study expanded the current understanding of neuronal pathology mediated by polyQ proteins via the coiled-coil–mediated interactions. These results may have important implications in therapeutic strategies for polyQ protein-related diseases. Neurodegenerative disorders, such as Huntington’s diseases and spinocerebellar ataxias (SCAs), are driven by proteins with expanded polyglutamine (polyQ) tracts. Recently, coiled-coil structures in polyQ regions of such proteins were shown to facilitate aggregate formation and ultimately lead to cell death. However, the molecular mechanism linking these structural domains to neuronal toxicity of polyQ proteins remains elusive. Here, we demonstrate that coiled-coil structures in the Q repeat region of SCA type 3 (SCA3) polyQ proteins confer protein toxicity in Drosophila neurons. To functionally characterize coiled-coil structures in the Q repeat regions, we generated three structural variants of SCA3 polyQ proteins: (i) MJDtr-76Q, containing both α-helical coiled-coil and β-sheet hairpin structures in the Q repeat region; (ii) MJDtr-70Q_cc0, possessing only α-helical coiled-coil structures due to the incorporation of β-sheet–breaking residues (Q-to-N or Q-to-E mutations); and (iii) MJDtr-70Q_pQp, with no secondary structure due to the introduced proline residues (Q-to-P mutations). Through comparative analysis of these variants, we found that coiled-coil structures facilitated nuclear localization of SCA3 polyQ proteins and induced dendrite defects in Drosophila dendritic arborization neurons. Furthermore, genetic and functional screening identified the transcription factor Foxo as a target of polyQ proteins, and coiled-coil–mediated interactions of Foxo and polyQ proteins in the nucleus resulted in the observed dendrite and behavioral defects in Drosophila. These results demonstrate that coiled-coil structures of polyQ proteins are crucial for their neuronal toxicity, which is conferred through coiled-coil to coiled-coil interactions with the nuclear targets of these proteins.
Collapse
|
9
|
Santiago C, Bashaw GJ. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor. Cell Rep 2017; 18:1646-1659. [PMID: 28199838 DOI: 10.1016/j.celrep.2017.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/30/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl) controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra)/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
11
|
Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F, Stoeckli ET, Araújo SJ. SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 2017; 77:963-974. [DOI: 10.1002/dneu.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo José Barrecheguren
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
| | - Oriol Ros
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
- Vall d'Hebron Institute of Research (VHIR); Barcelona 08035 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona 08010 Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Sofia J. Araújo
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona 08028 Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
| |
Collapse
|
12
|
Evans TA. Embryonic axon guidance: insights from Drosophila and other insects. CURRENT OPINION IN INSECT SCIENCE 2016; 18:11-16. [PMID: 27939705 DOI: 10.1016/j.cois.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
During embryonic development, growing axons are guided by cellular signaling pathways that control a series of individual axon guidance decisions. In Drosophila, two major pathways (Netrin-Frazzled/DCC and Slit-Robo) regulate axon guidance in the embryonic ventral nerve cord, including the critical decision of whether or not to cross the midline. Studies in the fruit fly have revealed a complex picture of precise regulation and cross-talk between these pathways. In addition, Robo receptors in Drosophila have diversified their activities to regulate additional axon guidance decisions in the developing embryo. Here, I discuss recent advances in understanding roles and regulation of the Net-Fra and Slit-Robo signaling pathways in Drosophila, and examine the evolutionary conservation of these signaling mechanisms across insects and other arthropods.
Collapse
Affiliation(s)
- Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
13
|
Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Rep 2016; 14:1901-15. [PMID: 26904955 DOI: 10.1016/j.celrep.2016.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Asadzadeh J, Neligan N, Kramer SG, Labrador JP. Tinman Regulates NetrinB in the Cardioblasts of the Drosophila Dorsal Vessel. PLoS One 2016; 11:e0148526. [PMID: 26840059 PMCID: PMC4740434 DOI: 10.1371/journal.pone.0148526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis of the Drosophila dorsal vessel (DV) shares similarities with that of the vertebrate heart. Precursors line up at both sides of the embryo, migrate towards the midline and fuse to form a tubular structure. Guidance receptors and their ligands have been implicated in this process in vertebrates and invertebrates, as have been a series of evolutionarily conserved cardiogenic transcriptional regulators including Tinman, the Drosophila homolog of the transcription factor Nkx-2.5. NetrinB (NetB), a repulsive ligand for the Unc-5 receptor is required to preserve the dorsal vessel hollow. It localizes to the luminal space of the dorsal vessel but its source and its regulation is unknown. Here, using genetics together with in situ hybridization with single cell resolution, we show how tin is required for NetrinB expression in cardioblasts during DV tubulogenesis and sufficient to promote NetB transcription ectopically. We further identify a dorsal vessel-specific NetB enhancer and show that it is also regulated by tin in a similar fashion to NetB.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Niamh Neligan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Sunita G. Kramer
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
15
|
Kamiyama D, McGorty R, Kamiyama R, Kim MD, Chiba A, Huang B. Specification of Dendritogenesis Site in Drosophila aCC Motoneuron by Membrane Enrichment of Pak1 through Dscam1. Dev Cell 2015; 35:93-106. [PMID: 26460947 PMCID: PMC4626010 DOI: 10.1016/j.devcel.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 01/11/2023]
Abstract
Precise positioning of dendritic branches is a critical step in the establishment of neuronal circuitry. However, there is limited knowledge on how environmental cues translate into dendrite initiation or branching at a specific position. Here, through a combination of mutation, RNAi, and imaging experiments, we found that a Dscam-Dock-Pak1 hierarchical interaction defines the stereotypical dendrite growth site in the Drosophila aCC motoneuron. This interaction localizes the Cdc42 effector Pak1 to the plasma membrane at the dendrite initiation site before the activation of Cdc42. Ectopic expression of membrane-anchored Pak1 overrides this spatial specification of dendritogenesis, confirming its function in guiding Cdc42 signaling. We further discovered that Dscam1 localization in aCC occurs through an inter-neuronal contact that involves Dscam1 in the partner MP1 neuron. These findings elucidate a mechanism by which Dscam1 controls neuronal morphogenesis through spatial regulation of Cdc42 signaling and, subsequently, cytoskeletal remodeling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/growth & development
- Animals, Genetically Modified/metabolism
- Cell Adhesion Molecules
- Cell Differentiation
- Cell Membrane/metabolism
- Cells, Cultured
- Cytoskeleton/metabolism
- Dendrites/physiology
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/antagonists & inhibitors
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Immunoenzyme Techniques
- Interneurons/cytology
- Interneurons/metabolism
- Morphogenesis/physiology
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/antagonists & inhibitors
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- RNA, Small Interfering/genetics
- p21-Activated Kinases/genetics
- p21-Activated Kinases/metabolism
Collapse
Affiliation(s)
- Daichi Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Ryan McGorty
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rie Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael D Kim
- Miami Institute of Molecular Imaging and Computation, Coral Gables, FL 33146, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Akira Chiba
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA; Miami Institute of Molecular Imaging and Computation, Coral Gables, FL 33146, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Brown HE, Reichert MC, Evans TA. Slit Binding via the Ig1 Domain Is Essential for Midline Repulsion by Drosophila Robo1 but Dispensable for Receptor Expression, Localization, and Regulation in Vivo. G3 (BETHESDA, MD.) 2015; 5:2429-39. [PMID: 26362767 PMCID: PMC4632062 DOI: 10.1534/g3.115.022327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides of the nervous system. Biochemical structure and interaction studies support a model in which Slit binding to the first immunoglobulin-like (Ig1) domain of Robo receptors activates a repulsive signaling pathway in axonal growth cones. Here, we examine the in vivo functional importance of the Ig1 domain of the Drosophila Robo1 receptor, which controls midline crossing of axons in response to Slit during development of the embryonic CNS. We show that deleting Ig1 from Robo1 disrupts Slit binding in cultured Drosophila cells, and that a Robo1 variant lacking Ig1 (Robo1(∆Ig1)) is unable to promote ectopic midline repulsion in gain-of-function studies in the Drosophila embryonic CNS. We show that the Ig1 domain is not required for proper expression, axonal localization, or Commissureless (Comm)-dependent regulation of Robo1 in vivo, and we use a genetic rescue assay to show that Robo1(∆Ig1) is unable to substitute for full-length Robo1 to properly regulate midline crossing of axons. These results establish a direct link between in vitro biochemical studies of Slit-Robo interactions and in vivo genetic studies of Slit-Robo signaling during midline axon guidance, and distinguish Slit-dependent from Slit-independent aspects of Robo1 expression, regulation, and activity during embryonic development.
Collapse
Affiliation(s)
- Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
17
|
Evans TA, Santiago C, Arbeille E, Bashaw GJ. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. eLife 2015; 4:e08407. [PMID: 26186094 PMCID: PMC4505356 DOI: 10.7554/elife.08407] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 11/13/2022] Open
Abstract
During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.
Collapse
Affiliation(s)
- Timothy A Evans
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
18
|
Banerjee S, Hayer K, Hogenesch JB, Granato M. Zebrafish foxc1a drives appendage-specific neural circuit development. Development 2015; 142:753-62. [PMID: 25670796 DOI: 10.1242/dev.115816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural connectivity between the spinal cord and paired appendages is key to the superior locomotion of tetrapods and aquatic vertebrates. In contrast to nerves that innervate axial muscles, those innervating appendages converge at a specialized structure, the plexus, where they topographically reorganize before navigating towards their muscle targets. Despite its importance for providing appendage mobility, the genetic program that drives nerve convergence at the plexus, as well as the functional role of this convergence, are not well understood. Here, we show that in zebrafish the transcription factor foxc1a is dispensable for trunk motor nerve guidance but is required to guide spinal nerves innervating the pectoral fins, equivalent to the tetrapod forelimbs. In foxc1a null mutants, instead of converging with other nerves at the plexus, pectoral fin nerves frequently bypass the plexus. We demonstrate that foxc1a expression in muscle cells delineating the nerve path between the spinal cord and the plexus region restores convergence at the plexus. By labeling individual fin nerves, we show that mutant nerves bypassing the plexus enter the fin at ectopic positions, yet innervate their designated target areas, suggesting that motor axons can select their appropriate fin target area independently of their migration through the plexus. Although foxc1a mutants display topographically correct fin innervation, mutant fin muscles exhibit a reduction in the levels of pre- and postsynaptic structures, concomitant with reduced pectoral fin function. Combined, our results reveal foxc1a as a key player in the development of connectivity between the spinal cord and paired appendages, which is crucial for appendage mobility.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katharina Hayer
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Lee H, Kim M, Kim N, Macfarlan T, Pfaff SL, Mastick GS, Song MR. Slit and Semaphorin signaling governed by Islet transcription factors positions motor neuron somata within the neural tube. Exp Neurol 2015; 269:17-27. [PMID: 25843547 DOI: 10.1016/j.expneurol.2015.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/15/2023]
Abstract
Motor neurons send out axons to peripheral muscles while their cell bodies remain in the ventral spinal cord. The unique configuration of motor neurons spanning the border between the CNS and PNS has been explained by structural barriers such as boundary cap (BC) cells, basal lamina and radial glia. However, mechanisms in motor neurons that retain their position have not been addressed yet. Here we demonstrate that the Islet1 (Isl1) and Islet2 (Isl2) transcription factors, which are essential for acquisition of motor neuron identity, also contribute to restrict motor neurons within the neural tube. In mice that lack both Isl1 and Isl2, large numbers of motor neurons exited the neural tube, even prior to the appearance of BC cells at the ventral exit points. Transcriptional profiling of motor neurons derived from Isl1 null embryonic stem cells revealed that transcripts of major genes involved in repulsive mechanisms were misregulated. Particularly, expression of Neuropilin1 (Npr1) and Slit2 mRNA was diminished in Islet mutant mice, and these could be target genes of the Islet proteins. Consistent with this mechanism, Robo and Slit mutations in mice and knockdown of Npr1 and Slit2 in chick embryos caused motor neurons to migrate to the periphery. Together, our study suggests that Islet genes engage Robo-Slit and Neuropilin-Semaphorin signaling in motor neurons to retain motor somata within the CNS.
Collapse
Affiliation(s)
- Hojae Lee
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Namhee Kim
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Todd Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Mi-Ryoung Song
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
20
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|