1
|
Zhang L, Wei Z, Dai Y, He F, Sun T. The role of CAPS in Ca 2+-regulated exocytosis: Promotion of vesicle tethering, priming, and fusion. Neuropharmacology 2025; 265:110247. [PMID: 39631678 DOI: 10.1016/j.neuropharm.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotransmitter and neuromodulator release by Ca2+-regulated exocytosis is essential for information transmisson between cells. Formation of SNARE complex (soluble N-ethylmaleimide sensitive factor attachment protein receptors) provide energy to bring vesicles and the plasma membranes together and catalyze membrane fusion. The "Ca2+-dependent activator protein for secretion" (CAPS) assumes a pivotal role in facilitating vesicle content release, not only in the nervous system but also in various other secretory tissues. In recent years, great progress has been made in the study of the mechanism of CAPS regulating vesicle secretion. In this review, we summarize recent advances toward the functions and molecular mechanisms of CAPSs in vesicle exocytosis, and contemplate future research directions that will illuminate the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuwan Dai
- Henan Provincial People's Hospital, 450003, Henan, China
| | - Fucheng He
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ting Sun
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Koppensteiner P, Bhandari P, Önal C, Borges-Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas P, Shigemoto R. GABA B receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proc Natl Acad Sci U S A 2024; 121:e2301449121. [PMID: 38346189 PMCID: PMC10895368 DOI: 10.1073/pnas.2301449121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.
Collapse
Affiliation(s)
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Cihan Önal
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | | | - Elodie Le Monnier
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Utsa Roy
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo105-8461, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| |
Collapse
|
3
|
Dong G. Two heads are better than one: Cooperation of two CAPS domains in membrane binding. Structure 2023; 31:372-374. [PMID: 37028394 DOI: 10.1016/j.str.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
In this issue of Structure, Zhang et al. report their structural studies on the C2 and PH domains of Ca2+-dependent activator proteins for secretion (CAPS). The two domains form a tightly packed module and generate a continuous basic patch across both domains to substantially enhance CAPS binding to PI(4,5)P2-containing membranes.
Collapse
Affiliation(s)
- Gang Dong
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
4
|
Zhang L, Li L, Wei Z, Zhou H, Liu H, Wang S, Ren Y, Dai T, Wang J, Hu Z, Ma C. The C 2 and PH domains of CAPS constitute an effective PI(4,5)P2-binding unit essential for Ca 2+-regulated exocytosis. Structure 2023; 31:424-434.e6. [PMID: 36863339 DOI: 10.1016/j.str.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Ca2+-dependent activator proteins for secretion (CAPSs) are required for Ca2+-regulated exocytosis in neurons and neuroendocrine cells. CAPSs contain a pleckstrin homology (PH) domain that binds PI(4,5)P2-membrane. There is also a C2 domain residing adjacent to the PH domain, but its function remains unclear. In this study, we solved the crystal structure of the CAPS-1 C2PH module. The structure showed that the C2 and PH tandem packs against one another mainly via hydrophobic residues. With this interaction, the C2PH module exhibited enhanced binding to PI(4,5)P2-membrane compared with the isolated PH domain. In addition, we identified a new PI(4,5)P2-binding site on the C2 domain. Disruption of either the tight interaction between the C2 and PH domains or the PI(4,5)P2-binding sites on both domains significantly impairs CAPS-1 function in Ca2+-regulated exocytosis at the Caenorhabditis elegans neuromuscular junction (NMJ). These results suggest that the C2 and PH domains constitute an effective unit to promote Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ziqing Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tiankai Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafan Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
6
|
Staudt A, Ratai O, Bouzouina A, Fecher-Trost C, Shaaban A, Bzeih H, Horn A, Shaib AH, Klose M, Flockerzi V, Lauterbach MA, Rettig J, Becherer U. Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini. Front Mol Neurosci 2022; 15:674243. [PMID: 35493323 PMCID: PMC9049930 DOI: 10.3389/fnmol.2022.674243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using – in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.
Collapse
Affiliation(s)
- Angelina Staudt
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Olga Ratai
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Aicha Bouzouina
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Hawraa Bzeih
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alexander Horn
- Department of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Ali H. Shaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Klose
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Marcel A. Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- *Correspondence: Ute Becherer,
| |
Collapse
|
7
|
Nestvogel DB, Merino RM, Leon-Pinzon C, Schottdorf M, Lee C, Imig C, Brose N, Rhee JS. The Synaptic Vesicle Priming Protein CAPS-1 Shapes the Adaptation of Sensory Evoked Responses in Mouse Visual Cortex. Cell Rep 2021; 30:3261-3269.e4. [PMID: 32160535 DOI: 10.1016/j.celrep.2020.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.
Collapse
Affiliation(s)
- Dennis B Nestvogel
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; International Max Planck Research School for Neuroscience at the University of Göttingen, 37075 Göttingen, Germany.
| | - Ricardo Martins Merino
- International Max Planck Research School for Neuroscience at the University of Göttingen, 37075 Göttingen, Germany; Theoretical Neurophysics Group, Max Planck Institute for Dynamics and Self Organization, 37077 Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Carolina Leon-Pinzon
- Theoretical Neurophysics Group, Max Planck Institute for Dynamics and Self Organization, 37077 Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Campus Institute for Dynamics of Biological Networks, 37075 Göttingen, Germany
| | - Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
8
|
CAPS1 Suppresses Tumorigenesis in Cholangiocarcinoma. Dig Dis Sci 2020; 65:1053-1063. [PMID: 31562609 DOI: 10.1007/s10620-019-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND CAPS1 (calcium-dependent activator protein for secretion) is a multi-domain protein involved in regulating exocytosis of synaptic vesicles and dense-core vesicles. However, the expression and function of CAPS1 in cholangiocarcinoma (CCA) remains unclear. In the present study, we explored the role of CAPS1 in CCA carcinogenesis. METHODS CAPS1 expression was explored using western blotting and immunohistochemistry in four CCA cell lines and clinical samples from 90 cases of CCA. The clinical significance of CAPS1 was analyzed. The biological function of CAPS1 in CCA cells was detected in vitro and in vivo. The underlying mechanism of CAPS1 function was explored by detecting the expression of critical molecules in its associated signaling pathways. The mechanism of CAPS1 downregulation in tumor tissues was explored using in silico prediction and luciferase reporter assays. RESULTS CAPS1 expression was reduced in CCA cell lines and human tumor tissues. Loss of CAPS1 in tumor tissues was closely associated with poor prognosis of patients with CCA. Moreover, CAPS1 expression correlated significantly with tumor-node-metastasis stage, lymph node metastasis, and vascular invasion. Lentivirus-mediated CAPS1 overexpression substantially prevented clone formation, cell proliferation, and cell cycle progression. CAPS1 overexpression also suppressed carcinogenesis in nude mice. Mechanistically, CAPS1 overexpression greatly accelerated the ERK and p38 MAPK signal pathways. In addition, microRNA miR-30e-5p negatively regulated CAPS1 expression. CONCLUSION These data showed that CAPS1 functions as a tumor suppressor in CCA. Reduced CAPS1 expression could indicate poor prognosis of patients with CCA.
Collapse
|
9
|
An Alternative Exon of CAPS2 Influences Catecholamine Loading into LDCVs of Chromaffin Cells. J Neurosci 2019; 39:18-27. [PMID: 30389842 DOI: 10.1523/jneurosci.2040-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022] Open
Abstract
The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.
Collapse
|
10
|
Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E, Nagatomo I, Yamashita Y, Abe T, Nishikura K, Kumanogoh A, Hashimoto K, Kawahara Y. CAPS1 RNA Editing Promotes Dense Core Vesicle Exocytosis. Cell Rep 2017; 17:2004-2014. [PMID: 27851964 DOI: 10.1016/j.celrep.2016.10.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) plays a distinct role in the priming step of dense core vesicle (DCV) exocytosis. CAPS1 pre-mRNA is known to undergo adenosine-to-inosine RNA editing in its coding region, which results in a glutamate-to-glycine conversion at a site in its C-terminal region. However, the physiological significance of CAPS1 RNA editing remains elusive. Here, we created mutant mice in which edited CAPS1 was solely expressed. These mice were lean due to increased energy expenditure caused by physical hyperactivity. Electrophysiological and biochemical analyses demonstrated that the exocytosis of DCVs was upregulated in the chromaffin cells and neurons of these mice. Furthermore, we showed that edited CAPS1 bound preferentially to the activated form of syntaxin-1A, a component of the exocytotic fusion complex. These findings suggest that RNA editing regulates DCV exocytosis in vivo, affecting physical activity.
Collapse
Affiliation(s)
- Kotaro Miyake
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Hisako Nakayama
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, Kobe, Hyogo 650-8530, Japan
| | - Yuri Terao
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiji Oiki
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Yamashita
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan
| | | | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Walter AM, Müller R, Tawfik B, Wierda KD, Pinheiro PS, Nadler A, McCarthy AW, Ziomkiewicz I, Kruse M, Reither G, Rettig J, Lehmann M, Haucke V, Hille B, Schultz C, Sørensen JB. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife 2017; 6:30203. [PMID: 29068313 PMCID: PMC5711374 DOI: 10.7554/elife.30203] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen. One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2. Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect. The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Rainer Müller
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bassam Tawfik
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Keimpe Db Wierda
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paulo S Pinheiro
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - André Nadler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Iwona Ziomkiewicz
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Martin Kruse
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Gregor Reither
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Bertil Hille
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jakob Balslev Sørensen
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
van Keimpema L, Kooistra R, Toonen RF, Verhage M. CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons. Sci Rep 2017; 7:10817. [PMID: 28883501 PMCID: PMC5589909 DOI: 10.1038/s41598-017-10936-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
CAPS (calcium-dependent activator protein for secretion) are multi-domain proteins involved in regulated exocytosis of synaptic vesicles (SVs) and dense core vesicles (DCVs). Here, we assessed the contribution of different CAPS-1 domains to its subcellular localization and DCV exocytosis by expressing CAPS-1 mutations in four functional domains in CAPS-1/-2 null mutant (CAPS DKO) mouse hippocampal neurons, which are severely impaired in DCV exocytosis. CAPS DKO neurons showed normal development and no defects in DCV biogenesis and their subcellular distribution. Truncation of the CAPS-1 C-terminus (CAPS Δ654-1355) impaired CAPS-1 synaptic enrichment. Mutations in the C2 (K428E or G476E) or pleckstrin homology (PH; R558D/K560E/K561E) domain did not. However, all mutants rescued DCV exocytosis in CAPS DKO neurons to only 20% of wild type CAPS-1 exocytosis capacity. To assess the relative importance of CAPS for both secretory pathways, we compared effect sizes of CAPS-1/-2 deficiency on SV and DCV exocytosis. Using the same (intense) stimulation, DCV exocytosis was impaired relatively strong (96% inhibition) compared to SV exocytosis (39%). Together, these data show that the CAPS-1 C-terminus regulates synaptic enrichment of CAPS-1. All CAPS-1 functional domains are required, and the C2 and PH domain together are not sufficient, for DCV exocytosis in mammalian CNS neurons.
Collapse
Affiliation(s)
- Linda van Keimpema
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
- Sylics (Synaptologics BV), PO box 71033, 1008 BA, Amsterdam, The Netherlands
| | - Robbelien Kooistra
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
14
|
Neurosecretion: what can we learn from chromaffin cells. Pflugers Arch 2017; 470:7-11. [PMID: 28801866 PMCID: PMC5748399 DOI: 10.1007/s00424-017-2051-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Many of the molecular players in the stimulus-secretion chain are similarly active in neurosecretion and catecholamine release. Therefore, studying chromaffin cells uncovered many details of the processes of docking, priming, and exocytosis of vesicles. However, morphological specializations at synapses, called active zones (AZs), confer extra speed of response and another layer of control to the fast release of vesicles by action potentials. Work at the Calyx of Held, a glutamatergic nerve terminal, has shown that in addition to such rapidly released vesicles, there is a pool of “Slow Vesicles,” which are held to be perfectly release-competent, but lack a final step of tight interaction with the AZ. It is argued here that such “Slow Vesicles” have many properties in common with chromaffin granules. The added complexity in the AZ-dependent regulation of “Fast Vesicles” can lead to misinterpretation of data on neurosecretion. Therefore, the study of Slow Vesicles and of chromaffin granules may provide a clearer picture of the early steps in the highly regulated process of neurosecretion.
Collapse
|
15
|
Extension of Helix 12 in Munc18-1 Induces Vesicle Priming. J Neurosci 2017; 36:6881-91. [PMID: 27358447 DOI: 10.1523/jneurosci.0007-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex result in an additional interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing Munc18-1 mutants designed to either perturb the extension of helix 12 (Δ324-339), block its interaction with synaptobrevin-2 (L348R), or extend the helix to promote coil-coil interactions with other proteins (P335A). The mutants rescued vesicle docking and syntaxin-1 targeting to the plasma membrane, with the exception of P335A that only supported partial syntaxin-1 targeting. Disruptive mutations (L348R or Δ324-339) lowered the secretory amplitude by decreasing vesicle priming, whereas P335A markedly increased priming and secretory amplitude. The mutants displayed unchanged kinetics and Ca(2+) dependence of fusion, indicating that the mutations specifically affect the vesicle priming step. Mutation of a nearby tyrosine (Y337A), which interacts with closed syntaxin-1, mildly increased secretory amplitude. This correlated with results from an in vitro fusion assay probing the functions of Munc18-1, indicating an easier transition to the extended state in the mutant. Our findings support the notion that a conformational transition within the Munc18-1 domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and vesicle priming. SIGNIFICANCE STATEMENT The essential postdocking role of Munc18-1 in vesicular exocytosis has remained elusive, but recent data led to the hypothesis that the extension of helix 12 in Munc18 within domain 3a leads to synaptobrevin-2/VAMP2 interaction and SNARE complex formation. Using both lack-of-function and gain-of-function mutants, we here report that the conformation of helix 12 predicts vesicle priming and secretory amplitude in living chromaffin cells. The effects of mutants on secretion could not be explained by differences in syntaxin-1 chaperoning/localization or vesicle docking, and the fusion kinetics and calcium dependence were unchanged, indicating that the effect of helix 12 extension is specific for the vesicle-priming step. We conclude that a conformational change within helix 12 is responsible for the essential postdocking role of Munc18-1 in neurosecretion.
Collapse
|
16
|
Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S, Jahn R, Castle JD, Tamm LK. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. SCIENCE ADVANCES 2017; 3:e1603208. [PMID: 28776026 PMCID: PMC5517108 DOI: 10.1126/sciadv.1603208] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Patrick Seelheim
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - J. David Castle
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Corresponding author.
| |
Collapse
|
17
|
Pinheiro PS, Houy S, Sørensen JB. C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 2016; 139:943-958. [DOI: 10.1111/jnc.13865] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paulo S. Pinheiro
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Sébastien Houy
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
18
|
Xue R, Tang W, Dong P, Weng S, Ma L, Chen S, Liu T, Shen X, Huang X, Zhang S, Dong L. CAPS1 Negatively Regulates Hepatocellular Carcinoma Development through Alteration of Exocytosis-Associated Tumor Microenvironment. Int J Mol Sci 2016; 17:1626. [PMID: 27689999 PMCID: PMC5085659 DOI: 10.3390/ijms17101626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
The calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles (DCVs) in neurons and neuroendocrine cells. The role of CAPS1 in cancer biology remains unknown. The purpose of this study was to investigate the role of CAPS1 in hepatocellular carcinoma (HCC). We determined the levels of CAPS1 in eight hepatoma cell lines and 141 HCC specimens. We evaluated the prognostic value of CAPS1 expression and its association with clinical parameters. We investigated the biological consequences of CAPS1 overexpression in two hepatoma cell lines in vitro and in vivo. The results showed that loss of CAPS1 expression in HCC tissues was markedly correlated with aggressive tumor phenotypes, such as high-grade tumor node metastasis (TNM) stage (p = 0.003) and absence of tumor encapsulation (p = 0.016), and was associated with poor overall survival (p = 0.008) and high recurrence (p = 0.015). CAPS1 overexpression inhibited cell proliferation and migration by changing the exocytosis-associated tumor microenvironment in hepatoma cells in vitro. The in vivo study showed that CAPS1 overexpression inhibited xenograft tumor growth. Together, these results identified a previously unrecognized tumor suppressor role for CAPS1 in HCC development.
Collapse
Affiliation(s)
- Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Pingping Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Shuqiang Weng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Lijie Ma
- Department of Hepatic Surgery of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Xiaowu Huang
- Department of Hepatic Surgery of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Farina M, van de Bospoort R, He E, Persoon CM, van Weering JRT, Broeke JH, Verhage M, Toonen RF. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons. eLife 2015; 4. [PMID: 25719439 PMCID: PMC4341531 DOI: 10.7554/elife.05438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/09/2015] [Indexed: 01/03/2023] Open
Abstract
Neuropeptides released from dense-core vesicles (DCVs) modulate neuronal activity, but the molecules driving DCV secretion in mammalian neurons are largely unknown. We studied the role of calcium-activator protein for secretion (CAPS) proteins in neuronal DCV secretion at single vesicle resolution. Endogenous CAPS-1 co-localized with synaptic markers but was not enriched at every synapse. Deletion of CAPS-1 and CAPS-2 did not affect DCV biogenesis, loading, transport or docking, but DCV secretion was reduced by 70% in CAPS-1/CAPS-2 double null mutant (DKO) neurons and remaining fusion events required prolonged stimulation. CAPS deletion specifically reduced secretion of stationary DCVs. CAPS-1-EYFP expression in DKO neurons restored DCV secretion, but CAPS-1-EYFP and DCVs rarely traveled together. Synaptic localization of CAPS-1-EYFP in DKO neurons was calcium dependent and DCV fusion probability correlated with synaptic CAPS-1-EYFP expression. These data indicate that CAPS-1 promotes fusion competence of immobile (tethered) DCVs in presynaptic terminals and that CAPS-1 localization to DCVs is probably not essential for this role. DOI:http://dx.doi.org/10.7554/eLife.05438.001 Our ability to think and act is due to the remarkable capacity of the brain to process complex information. This involves nerve cells (or neurons) communicating with each other in a rapid and precise manner by releasing synaptic vesicles containing neurotransmitters across the gaps—called synapses—between neurons. In addition to this fast neurotransmitter signalling, neurons can transmit signals by releasing chemical signals called neuropeptides. Neuropeptides are major regulators of human brain function, including mood, anxiety, and social interactions. Neuropeptides and other neuromodulators such as serotonin and dopamine are normally packaged into bubble-like compartments called dense-core vesicles. Compared to synaptic vesicles we know much less about how dense-core vesicles are trafficked and released. Dense-core vesicles are generally mobile and move around the inside of cells to release neuropeptides where and when they are needed. However, some vesicles are stationary and may even be loosely tethered to the cell membrane. Most of the sites where dense-core vesicles can fuse with the cell membrane are at synapses. Previous work has suggested that the protein CAPS-1 is important for moving dense-core vesicles to the correct sites on the cell membrane, and for releasing neuropeptides across the synapses of worms and flies. However, detailed insights into this process in mammalian neurons are lacking. By examining neurons from both normal mice and mice lacking the CAPS-1 protein, Farina et al. have now analyzed the role CAPS-1 plays in releasing neuropeptides. In cells lacking CAPS-1 fewer dense-core vesicles merged with the cell membrane than in cells containing the protein. However, a new technique that tracks the movement of individual vesicles revealed that only stationary dense-core vesicles had difficulties fusing; mobile vesicles continued to fuse with the cell membrane in the normal manner. Introducing CAPS-1 into cells lacking this protein corrected the fusion defect experienced by the stationary vesicles. Farina et al. also showed that CAPS-1 was present at most—but not all—synapses, and synapses that had more CAPS-1 released more neuropeptides. This work shows that CAPS proteins strongly influence the probability of dense-core vesicle release and that neurons can tune this probability at individual synapses by controlling the expression of CAPS. Future work will be aimed at understanding how neurons can achieve this and which protein domains in CAPS are required. DOI:http://dx.doi.org/10.7554/eLife.05438.002
Collapse
Affiliation(s)
- Margherita Farina
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Rhea van de Bospoort
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Enqi He
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Claudia M Persoon
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jurjen H Broeke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|