1
|
Liu CP, Xu RM. Structure and function of histone chaperones in replication-coupled chromatin assembly. Curr Opin Struct Biol 2025; 92:103059. [PMID: 40339328 DOI: 10.1016/j.sbi.2025.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
Eukaryotic cell divisions pass on genetic and epigenetic information from parental to daughter cells through replication of the chromatin, which needs to be reestablished following DNA replication, as its building block, the nucleosome, is disrupted by the passage of the DNA replication fork. This replication-coupled (RC) nucleosome assembly process takes place in distinct pathways depending on whether newly synthesized or parental histones are used. This review highlights recent progress in structural and biochemical studies of RC nucleosome assembly, focusing on the roles of histone chaperones in both de novo assembly of nucleosomes from newly synthesized histones and the recycling of parental histones. We also discuss the interactions between histone chaperones and replisome components that govern the coupling of nucleosome assembly to chromatin replication. Finally, we offer our perspective on future efforts in advancing this important research direction.
Collapse
Affiliation(s)
- Chao-Pei Liu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui-Ming Xu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Shi X, Fedulova A, Kotova E, Maluchenko N, Armeev G, Chen Q, Prasanna C, Sivkina A, Feofanov A, Kirpichnikov M, Nordensköld L, Shaytan A, Studitsky V. Histone tetrasome dynamics affects chromatin transcription. Nucleic Acids Res 2025; 53:gkaf356. [PMID: 40304183 PMCID: PMC12041859 DOI: 10.1093/nar/gkaf356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer microscopy, and nuclear magnetic resonance spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU–BIT University, No. 1, International University Park Road, Longgang District, Shenzhen, Guangdong Province 518172, China
| | | | - Elena Y Kotova
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | | | - Grigoriy A Armeev
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Alexey V Feofanov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Lars Nordensköld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexey K Shaytan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Computer Science, HSE University, 109028 Moscow, Russia
| | - Vasily M Studitsky
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| |
Collapse
|
3
|
Shi X, Fedulova AS, Kotova EY, Maluchenko NV, Armeev GA, Chen Q, Prasanna C, Sivkina AL, Feofanov AV, Kirpichnikov MP, Nordensköld L, Shaytan AK, Studitsky VM. Histone Tetrasome Dynamics Affects Chromatin Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604164. [PMID: 39071396 PMCID: PMC11275759 DOI: 10.1101/2024.07.18.604164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer (spFRET) microscopy and NMR spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
|
4
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
5
|
Zhao X, Vogirala VK, Liu M, Zhou Y, Rhodes D, Sandin S, Yan J. Exploring TRF2-Dependent DNA Distortion Through Single-DNA Manipulation Studies. Commun Biol 2024; 7:148. [PMID: 38310140 PMCID: PMC10838314 DOI: 10.1038/s42003-024-05838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Vinod Kumar Vogirala
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Meihan Liu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore.
- Umeå university, KBC-huset (KB), Linnaeus väg 10, Umeå, 90187, Sweden.
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
6
|
Banko P, Okimune KI, Nagy SK, Hamasaki A, Morishita R, Onouchi H, Takasuka TE. In vitro co-expression chromatin assembly and remodeling platform for plant histone variants. Sci Rep 2024; 14:936. [PMID: 38195981 PMCID: PMC10776871 DOI: 10.1038/s41598-024-51460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
Histone variants play a central role in shaping the chromatin landscape in plants, yet, how their distinct combinations affect nucleosome properties and dynamics is still largely elusive. To address this, we developed a novel chromatin assembly platform for Arabidopsis thaliana, using wheat germ cell-free protein expression. Four canonical histones and five reported histone variants were used to assemble twelve A. thaliana nucleosome combinations. Seven combinations were successfully reconstituted and confirmed by supercoiling and micrococcal nuclease (MNase) assays. The effect of the remodeling function of the CHR11-DDR4 complex on these seven combinations was evaluated based on the nucleosome repeat length and nucleosome spacing index obtained from the MNase ladders. Overall, the current study provides a novel method to elucidate the formation and function of a diverse range of nucleosomes in plants.
Collapse
Affiliation(s)
- Petra Banko
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kei-Ichi Okimune
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, 060-0809, Japan
| | - Szilvia K Nagy
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | | | - Ryo Morishita
- CellFree Sciences Co., Ltd, Matsuyama, 790-8577, Japan
| | - Hitoshi Onouchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, 060-0809, Japan.
| |
Collapse
|
7
|
Brouwer TB, Kaczmarczyk A, Zarguit I, Pham C, Dame RT, van Noort J. Unravelling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers. Methods Mol Biol 2024; 2819:535-572. [PMID: 39028523 DOI: 10.1007/978-1-0716-3930-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Genomes carry the genetic blueprint of all living organisms. Their organization requires strong condensation as well as carefully regulated accessibility to specific genes for proper functioning of their hosts. The study of the structure and dynamics of the proteins that organize the genome has benefited tremendously from the development of single-molecule force spectroscopy techniques that allow for real-time, nanometer accuracy measurements of the compaction of DNA and manipulation with pico-Newton scale forces. Magnetic tweezers, in particular, have the unique ability to complement such force spectroscopy with the control over the linking number of the DNA molecule, which plays an important role when DNA-organizing proteins form or release wraps, loops, and bends in DNA. Here, we describe all the necessary steps to prepare DNA substrates for magnetic tweezers experiments, assemble flow cells, tether DNA to a magnetic bead inside a flow cell, and manipulate and record the extension of such DNA tethers. Furthermore, we explain how mechanical parameters of nucleoprotein filaments can be extracted from the data.
Collapse
Affiliation(s)
- Thomas B Brouwer
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Artur Kaczmarczyk
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Ilias Zarguit
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Chi Pham
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - John van Noort
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Abstract
Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
Collapse
Affiliation(s)
- David Dulin
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
9
|
Buzón P, Velázquez‐Cruz A, Corrales‐Guerrero L, Díaz‐Quintana A, Díaz‐Moreno I, Roos WH. The Histone Chaperones SET/TAF-1β and NPM1 Exhibit Conserved Functionality in Nucleosome Remodeling and Histone Eviction in a Cytochrome c-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301859. [PMID: 37548614 PMCID: PMC10582448 DOI: 10.1002/advs.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1-representing the two most common histone chaperone folds-are examined using both nucleosomes and isolated histones. It is shown that these chaperones present binding specificity for fully dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, the histone eviction process and its modulation by cytochrome c are scrutinized. This approach shows that despite the different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Present address:
Department of BiochemistryUniversity of ZurichZurich8057Switzerland
| | - Alejandro Velázquez‐Cruz
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Laura Corrales‐Guerrero
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Antonio Díaz‐Quintana
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Irene Díaz‐Moreno
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
10
|
Liu CP, Yu Z, Xiong J, Hu J, Song A, Ding D, Yu C, Yang N, Wang M, Yu J, Hou P, Zeng K, Li Z, Zhang Z, Zhang X, Li W, Zhang Z, Zhu B, Li G, Xu RM. Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1. Science 2023; 381:eadd8673. [PMID: 37616371 PMCID: PMC11186048 DOI: 10.1126/science.add8673] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chromatin inheritance entails de novo nucleosome assembly after DNA replication by chromatin assembly factor-1 (CAF-1). Yet direct knowledge about CAF-1's histone binding mode and nucleosome assembly process is lacking. In this work, we report the crystal structure of human CAF-1 in the absence of histones and the cryo-electron microscopy structure of CAF-1 in complex with histones H3 and H4. One histone H3-H4 heterodimer is bound by one CAF-1 complex mainly through the p60 subunit and the acidic domain of the p150 subunit. We also observed a dimeric CAF-1-H3-H4 supercomplex in which two H3-H4 heterodimers are poised for tetramer assembly and discovered that CAF-1 facilitates right-handed DNA wrapping of H3-H4 tetramers. These findings signify the involvement of DNA in H3-H4 tetramer formation and suggest a right-handed nucleosome precursor in chromatin replication.
Collapse
Affiliation(s)
- Chao-Pei Liu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongbo Ding
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Juan Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peini Hou
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangning Zeng
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Li
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Abstract
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes. However, direct evidence of nucleosome remodeling by PICH has remained elusive. Here, we present an in vitro single-molecule assay that mimics chromatin under tension, as is found in anaphase chromatin bridges. Applying a combination of dual-trap optical tweezers and fluorescence imaging of PICH and histones bound to a nucleosome-array construct, we show that PICH is a tension- and ATP-dependent nucleosome remodeler that facilitates nucleosome unwrapping and then subsequently slides remaining histones along the DNA. This work elucidates the role of PICH in chromatin-bridge dissolution, and might provide molecular insights into the mechanisms of related SNF2 proteins.
Collapse
|
12
|
Assignment of structural transitions during mechanical unwrapping of nucleosomes and their disassembly products. Proc Natl Acad Sci U S A 2022; 119:e2206513119. [PMID: 35939666 PMCID: PMC9388122 DOI: 10.1073/pnas.2206513119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes, the fundamental structural unit of chromatin, consists of ∼147 DNA base pairs wrapped around a histone protein octamer. To characterize the strength of the nucleosomal barrier and its contribution as a mechanism of control of gene expression, it is essential to determine the forces required to unwrap the DNA from the core particle and the stepwise transitions involved. In this study, we performed combined optical tweezers and single-molecule fluorescence measurements to identify the specific DNA segments unwrapped during the force transitions observed in mechanical stretching of nucleosomes. Furthermore, we characterize the mechanical signatures of subnucleosomal hexasomes and tetrasomes. The characterization performed in this work is essential for the interpretation of ongoing studies of chromatin remodelers, polymerases, and histone chaperones. Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.
Collapse
|
13
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
14
|
Okimune K, Hataya S, Matsumoto K, Ushirogata K, Banko P, Takeda S, Takasuka TE. Histone chaperone-mediated co-expression assembly of tetrasomes and nucleosomes. FEBS Open Bio 2021; 11:2912-2920. [PMID: 34614293 PMCID: PMC8564334 DOI: 10.1002/2211-5463.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022] Open
Abstract
The nucleosome, a basic unit of chromatin found in all eukaryotes, is thought to be assembled through the orchestrated activity of several histone chaperones and chromatin assembly factors in a stepwise manner, proceeding from tetrasome assembly, to H2A/H2B deposition, and finally to formation of the mature nucleosome. In this study, we demonstrate chaperone-mediated assembly of both tetrasomes and nucleosomes on the well-defined Widom 601 positioning sequence using a co-expression/reconstitution wheat germ cell-free system. The purified tetrasomes and nucleosomes were positioned around the center of a given sequence. The heights and diameters were measured by atomic force microscopy. Together with the reported unmodified native histones produced by the wheat germ cell-free platform, our method is expected to be useful for downstream applications in the field of chromatin research.
Collapse
Affiliation(s)
- Kei‐ichi Okimune
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Shogo Hataya
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Kazuki Matsumoto
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Kanako Ushirogata
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
| | - Petra Banko
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| | - Seiji Takeda
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Taichi E. Takasuka
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
- Global Institute for Collaborative Research and EducationHokkaido UniversitySapporoJapan
| |
Collapse
|
15
|
Henneman B, Brouwer TB, Erkelens AM, Kuijntjes GJ, van Emmerik C, van der Valk RA, Timmer M, Kirolos NCS, van Ingen H, van Noort J, Dame RT. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res 2021; 49:4338-4349. [PMID: 33341892 PMCID: PMC8096283 DOI: 10.1093/nar/gkaa1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone–DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an ‘endless’ histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB–DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gert-Jan Kuijntjes
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Clara van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Nancy C S Kirolos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
16
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Winogradoff D, Li P, Joshi H, Quednau L, Maffeo C, Aksimentiev A. Chiral Systems Made from DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003113. [PMID: 33717850 PMCID: PMC7927625 DOI: 10.1002/advs.202003113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Indexed: 05/05/2023]
Abstract
The very chemical structure of DNA that enables biological heredity and evolution has non-trivial implications for the self-organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self-assembly. Discussed last are existing and proposed functional man-made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Pin‐Yi Li
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Himanshu Joshi
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Lauren Quednau
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Christopher Maffeo
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Aleksei Aksimentiev
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| |
Collapse
|
18
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
19
|
Kaczmarczyk A, Meng H, Ordu O, Noort JV, Dekker NH. Chromatin fibers stabilize nucleosomes under torsional stress. Nat Commun 2020; 11:126. [PMID: 31913285 PMCID: PMC6949304 DOI: 10.1038/s41467-019-13891-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Torsional stress generated during DNA replication and transcription has been suggested to facilitate nucleosome unwrapping and thereby the progression of polymerases. However, the propagation of twist in condensed chromatin remains yet unresolved. Here, we measure how force and torque impact chromatin fibers with a nucleosome repeat length of 167 and 197. We find that both types of fibers fold into a left-handed superhelix that can be stabilized by positive torsion. We observe that the structural changes induced by twist were reversible, indicating that chromatin has a large degree of elasticity. Our direct measurements of torque confirmed the hypothesis of chromatin fibers as a twist buffer. Using a statistical mechanics-based torsional spring model, we extracted values of the chromatin twist modulus and the linking number per stacked nucleosome that were in good agreement with values measured here experimentally. Overall, our findings indicate that the supercoiling generated by DNA-processing enzymes, predicted by the twin-supercoiled domain model, can be largely accommodated by the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Artur Kaczmarczyk
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Faculty of Medicine, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - He Meng
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Orkide Ordu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John van Noort
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
20
|
Ordu O, Lusser A, Dekker NH. DNA Sequence Is a Major Determinant of Tetrasome Dynamics. Biophys J 2019; 117:2217-2227. [PMID: 31521330 PMCID: PMC6895708 DOI: 10.1016/j.bpj.2019.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022] Open
Abstract
Eukaryotic genomes are hierarchically organized into protein-DNA assemblies for compaction into the nucleus. Nucleosomes, with the (H3-H4)2 tetrasome as a likely intermediate, are highly dynamic in nature by way of several different mechanisms. We have recently shown that tetrasomes spontaneously change the direction of their DNA wrapping between left- and right-handed conformations, which may prevent torque buildup in chromatin during active transcription or replication. DNA sequence has been shown to strongly affect nucleosome positioning throughout chromatin. It is not known, however, whether DNA sequence also impacts the dynamic properties of tetrasomes. To address this question, we examined tetrasomes assembled on a high-affinity DNA sequence using freely orbiting magnetic tweezers. In this context, we also studied the effects of mono- and divalent salts on the flipping dynamics. We found that neither DNA sequence nor altered buffer conditions affect overall tetrasome structure. In contrast, tetrasomes bound to high-affinity DNA sequences showed significantly altered flipping kinetics, predominantly via a reduction in the lifetime of the canonical state of left-handed wrapping. Increased mono- and divalent salt concentrations counteracted this behavior. Thus, our study indicates that high-affinity DNA sequences impact not only the positioning of the nucleosome but that they also endow the subnucleosomal tetrasome with enhanced conformational plasticity. This may provide a means to prevent histone loss upon exposure to torsional stress, thereby contributing to the integrity of chromatin at high-affinity sites.
Collapse
Affiliation(s)
- Orkide Ordu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
21
|
Kameda T, Awazu A, Togashi Y. Histone Tail Dynamics in Partially Disassembled Nucleosomes During Chromatin Remodeling. Front Mol Biosci 2019; 6:133. [PMID: 31850366 PMCID: PMC6896900 DOI: 10.3389/fmolb.2019.00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 11/13/2022] Open
Abstract
Nucleosomes are structural units of the chromosome consisting of DNA wrapped around histone proteins, and play important roles in compaction and regulation of the chromatin structure. While the structure and dynamics of canonical nucleosomes have been studied extensively, those of nucleosomes in intermediate states, that occur when their structure or positioning is modulated, have been less understood. In particular, the dynamic features of partially disassembled nucleosomes have not been discussed in previous studies. Using all-atom molecular dynamics simulations, in this study, we investigated the dynamics and stability of nucleosome structures lacking a histone-dimer. DNA in nucleosomes lacking a histone H2A/H2B dimer was drastically deformed due to loss of local interactions between DNA and histones. In contrast, conformation of DNA in nucleosomes lacking H3/H4 was similar to the canonical nucleosome, as the H2A C-terminal domain infiltrated the space originally occupied by the dissociated H3/H4 histones and restricted DNA dynamics in close proximity. Our results suggest that, besides histone chaperones, the intrinsic dynamics of nucleosomes support the exchange of H2A/H2B, which is significantly more frequent than that of H3/H4.
Collapse
Affiliation(s)
- Takeru Kameda
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuichi Togashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), Higashi-Hiroshima, Japan
| |
Collapse
|
22
|
Ma X, Zhu M, Liu J, Li X, Qu L, Liang L, Huang W, Wang J, Li N, Chen JH, Zhang W, Yu Z. Interactions between PHD3-Bromo of MLL1 and H3K4me3 Revealed by Single-Molecule Magnetic Tweezers in a Parallel DNA Circuit. Bioconjug Chem 2019; 30:2998-3006. [PMID: 31714753 DOI: 10.1021/acs.bioconjchem.9b00665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule force spectroscopy is a powerful tool to directly measure protein-protein interactions (PPI). The high specificity and precision of PPI measurements made it possible to reveal detailed mechanisms of intermolecular interactions. However, protein aggregation due to specific or nonspecific interactions is among the most challenging problems in PPI examination. Here, we propose a strategy of a parallel DNA circuit to probe PPI using single-molecule magnetic tweezers. In contrast to PPI examination using atomic force microscopy, microspheres as probes used in magnetic tweezers avoided the single-probe issue of a cantilever. Negatively charged DNA as a linker circumvented the severe aggregation in the PPI construct with a protein linker. The unnatural amino acid encoded in proteins of interest expanded the choices of biorthogonal conjugation. We demonstrated how to apply our strategy to probe the PPI between the PHD3-Bromo and the histone H3 methylated at K4, a critical epigenetic event in leukemia development. We found a rupture force of 12 pN for breaking the PPI, which is much higher than that required to peel DNA off from a nucleosome, 3 pN. We expect that our methods will make PPI measurements of mechanics and kinetics with great precision, facilitating PPI-related research, e.g., PPI-targeted drug discovery.
Collapse
Affiliation(s)
- Xiaofeng Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Manning Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Jianyu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Lihua Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Junli Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases , Key Laboratory of Parasite and Vector Biology, Ministry of Health , Shanghai 200025 , China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| |
Collapse
|
23
|
Eltsov M, Grewe D, Lemercier N, Frangakis A, Livolant F, Leforestier A. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res 2019; 46:9189-9200. [PMID: 30053160 PMCID: PMC6158616 DOI: 10.1093/nar/gky670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
In Eukaryotes, DNA is wound around the histone octamer forming the basic chromatin unit, the nucleosome. Atomic structures have been obtained from crystallography and single particle cryo-electron microscopy (cryoEM) of identical engineered particles. But native nucleosomes are dynamical entities with diverse DNA sequence and histone content, and little is known about their conformational variability, especially in the cellular context. Using cryoEM and tomography of vitreous sections we analyse native nucleosomes, both in vitro, using purified particles solubilized at physiologically relevant concentrations (25–50%), and in situ, within interphase nuclei. We visualize individual nucleosomes at a level of detail that allows us to measure the distance between the DNA gyres wrapped around. In concentrated solutions, we demonstrate a salt-dependent transition, with a high salt compact conformation resembling the canonical nucleosome and an open low salt one, closer to nuclear nucleosomes. Although further particle characterization and cartography are needed to understand the relationship between this conformational variability and chromatin functional states, this work opens a route to chromatin exploration in situ.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Diana Grewe
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Nicolas Lemercier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Françoise Livolant
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| |
Collapse
|
24
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
25
|
Wang W, Zhang K, Chen D. From Tunable DNA/Polymer Self-Assembly to Tailorable and Morphologically Pure Core-Shell Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15350-15359. [PMID: 30427695 DOI: 10.1021/acs.langmuir.8b02992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In reported experimental studies, DNA/polymer self-assemblies are usually kinetically trapped, leading to the encapsulation and irregular collapse of DNA chains within the resultant assemblies. In striking contrast, eukaryotic cells use tetrasome-to-nucleosome pathways to escape possible kinetic trapping for the formation of well-defined 10 nm chromatin fibers. Here, we report a novel pathway for DNA and amphiphilic diblock copolymer self-assembly inspired by the tetrasome pathway with highly controllable kinetics. The polymer is an A- b-B diblock copolymer with a hydrophilic and noninteractive block A and a hydrophobic and interactive block B. Below the critical water content for the micellization, B blocks wrap the backbone of a DNA chain by weak electrostatic interactions to form a linear DNA/polymer complex. With a gradual increase in the water content, the diblock copolymer unimers in the bulk solution tend to aggregate on the linear DNA/polymer complex, which induces the originally wrapped DNA chain, to change its conformation to wrap around the polymer aggregate, guiding and tailoring the self-assembly. Highly controllable kinetics is achieved via the reduced DNA/polymer electrostatic interactions and the high dynamics of the polymer chains in the system. DNA/polymer self-assembly leads to tailorable and morphologically pure core-shell nanofibers. Compared to the DNA/micelle self-assembly pathway described in our previous study, the present self-assembly pathway exhibits advantages for the fabrication of flexible nanofibers with lengths in micrometers and the potential for unique applications in preparing not only 2D networks at extremely low percolation thresholds but also chemiresistors with large on/off current ratios.
Collapse
Affiliation(s)
- Weichong Wang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , 2005 Songhu Road , Shanghai 200438 , P.R. China
| | - Kaka Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , 2005 Songhu Road , Shanghai 200438 , P.R. China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , 2005 Songhu Road , Shanghai 200438 , P.R. China
| |
Collapse
|
26
|
Efremov AK, Yan J. Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions. Nucleic Acids Res 2018; 46:6504-6527. [PMID: 29878241 PMCID: PMC6061897 DOI: 10.1093/nar/gky478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Organization and maintenance of the chromosomal DNA in living cells strongly depends on the DNA interactions with a plethora of DNA-binding proteins. Single-molecule studies show that formation of nucleoprotein complexes on DNA by such proteins is frequently subject to force and torque constraints applied to the DNA. Although the existing experimental techniques allow to exert these type of mechanical constraints on individual DNA biopolymers, their exact effects in regulation of DNA-protein interactions are still not completely understood due to the lack of systematic theoretical methods able to efficiently interpret complex experimental observations. To fill this gap, we have developed a general theoretical framework based on the transfer-matrix calculations that can be used to accurately describe behaviour of DNA-protein interactions under force and torque constraints. Potential applications of the constructed theoretical approach are demonstrated by predicting how these constraints affect the DNA-binding properties of different types of architectural proteins. Obtained results provide important insights into potential physiological functions of mechanical forces in the chromosomal DNA organization by architectural proteins as well as into single-DNA manipulation studies of DNA-protein interactions.
Collapse
Affiliation(s)
- Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| |
Collapse
|
27
|
Ordu O, Kremser L, Lusser A, Dekker NH. Modification of the histone tetramer at the H3-H3 interface impacts tetrasome conformations and dynamics. J Chem Phys 2018; 148:123323. [PMID: 29604863 DOI: 10.1063/1.5009100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleosomes consisting of a short piece of deoxyribonucleic acid (DNA) wrapped around an octamer of histone proteins form the fundamental unit of chromatin in eukaryotes. Their role in DNA compaction comes with regulatory functions that impact essential genomic processes such as replication, transcription, and repair. The assembly of nucleosomes obeys a precise pathway in which tetramers of histones H3 and H4 bind to the DNA first to form tetrasomes, and two dimers of histones H2A and H2B are subsequently incorporated to complete the complex. As viable intermediates, we previously showed that tetrasomes can spontaneously flip between a left-handed and right-handed conformation of DNA-wrapping. To pinpoint the underlying mechanism, here we investigated the role of the H3-H3 interface for tetramer flexibility in the flipping process at the single-molecule level. Using freely orbiting magnetic tweezers, we studied the assembly and structural dynamics of individual tetrasomes modified at the cysteines close to this interaction interface by iodoacetamide (IA) in real time. While such modification did not affect the structural properties of the tetrasomes, it caused a 3-fold change in their flipping kinetics. The results indicate that the IA-modification enhances the conformational plasticity of tetrasomes. Our findings suggest that subnucleosomal dynamics may be employed by chromatin as an intrinsic and adjustable mechanism to regulate DNA supercoiling.
Collapse
Affiliation(s)
- Orkide Ordu
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H Dekker
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
28
|
Brouwer TB, Kaczmarczyk A, Pham C, van Noort J. Unraveling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers. Methods Mol Biol 2018; 1837:317-349. [PMID: 30109618 DOI: 10.1007/978-1-4939-8675-0_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomes carry the genetic blueprint of all living organisms. Their organization requires strong condensation as well as carefully regulated accessibility to specific genes for proper functioning of their hosts. The study of the structure and dynamics of the proteins that organize the genome has benefited tremendously from the development of single-molecule force spectroscopy techniques that allow for real-time, nanometer accuracy measurements of the compaction of DNA and manipulation with pico-Newton scale forces. Magnetic tweezers in particular have the unique ability to complement such force spectroscopy with the control over the linking number of the DNA molecule, which plays an important role when DNA organizing proteins form or release wraps, loops, and bends in DNA. Here, we describe all the necessary steps to prepare DNA substrates for magnetic tweezers experiments, assemble flow cells, tether DNA to magnetics bead inside flow cell, and manipulate and record the extension of such DNA tethers. Furthermore, we explain how mechanical parameters of nucleo-protein filaments can be extracted from the data.
Collapse
Affiliation(s)
- Thomas B Brouwer
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA, The Netherlands
| | - Artur Kaczmarczyk
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA, The Netherlands
| | - Chi Pham
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA, The Netherlands
| | - John van Noort
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA, The Netherlands.
| |
Collapse
|
29
|
Kriegel F, Vanderlinden W, Nicolaus T, Kardinal A, Lipfert J. Measuring Single-Molecule Twist and Torque in Multiplexed Magnetic Tweezers. Methods Mol Biol 2018; 1814:75-98. [PMID: 29956228 DOI: 10.1007/978-1-4939-8591-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Magnetic tweezers permit application of precisely calibrated stretching forces to nucleic acid molecules tethered between a surface and superparamagnetic beads. In addition, magnetic tweezers can control the tethers' twist. Here, we focus on recent extensions of the technique that expand the capabilities of conventional magnetic tweezers by enabling direct measurements of single-molecule torque and twist. Magnetic torque tweezers (MTT) still control the DNA or RNA tether's twist, but directly measure molecular torque by monitoring changes in the equilibrium rotation angle upon overwinding and underwinding of the tether. In freely orbiting magnetic tweezers (FOMT), one end of the tether is allowed to rotate freely, while still applying stretching forces and monitoring rotation angle. Both MTT and FOMT have provided unique insights into the mechanical properties, structural transitions, and interactions of DNA and RNA. Here, we provide step-by-step protocols to carry out FOMT and MTT measurements. In particular, we focus on multiplexed measurements, i.e., measurements that record data for multiple nucleic acid tethers at the same time, to improve statistics and to facilitate the observation of rare events.
Collapse
Affiliation(s)
- Franziska Kriegel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany.,Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Leuven, Belgium
| | - Thomas Nicolaus
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany
| | - Angelika Kardinal
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany.
| |
Collapse
|
30
|
Imre L, Simándi Z, Horváth A, Fenyőfalvi G, Nánási P, Niaki EF, Hegedüs É, Bacsó Z, Weyemi U, Mauser R, Ausio J, Jeltsch A, Bonner W, Nagy L, Kimura H, Szabó G. Nucleosome stability measured in situ by automated quantitative imaging. Sci Rep 2017; 7:12734. [PMID: 28986581 PMCID: PMC5630628 DOI: 10.1038/s41598-017-12608-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones. The accuracy of the assay allowed us to observe examples of strict association between nucleosome stability and PTMs across cell types, differentiation state and throughout the cell-cycle in close to native chromatin context, and resolve ambiguities regarding the destabilizing effect of H2A.X phosphorylation. The advantages of the in situ measuring scenario are demonstrated via the marked effect of DNA nicking on histone eviction that underscores the powerful potential of topological relaxation in the epigenetic regulation of DNA accessibility.
Collapse
Affiliation(s)
- László Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zoltán Simándi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Attila Horváth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - György Fenyőfalvi
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Urbain Weyemi
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Rebekka Mauser
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - Juan Ausio
- University of Victoria, Department of Biochemistry, Victoria, BC, V8W 3P6, Canada
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - William Bonner
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
31
|
Vlijm R, Kim SH, De Zwart PL, Dalal Y, Dekker C. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. NANOSCALE 2017; 9:1862-1870. [PMID: 28094382 PMCID: PMC7959483 DOI: 10.1039/c6nr06245h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of chaperone-assisted nucleosome assembly, we show that the handedness of the DNA wrapping around the nucleosome core is intrinsically ambidextrous, and depends on the pre-assembly supercoiling state of the DNA, i.e., it is not uniquely determined by the octameric histone core. Nucleosomes assembled onto negatively supercoiled DNA are found to exhibit a left-handed conformation, whereas assembly onto positively supercoiled DNA results in right-handed nucleosomes. This intrinsic flexibility to adopt both chiralities is observed both for canonical H3 nucleosomes, and for centromere-specific variant CENP-A nucleosomes. These data support recent advances suggesting an intrinsic adaptability of the nucleosome, and provide insights into how nucleosomes might rapidly re-assemble after cellular processes that generate positive supercoiling in vivo.
Collapse
Affiliation(s)
- R Vlijm
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - S H Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - P L De Zwart
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - Y Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - C Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| |
Collapse
|
32
|
Rutkauskas M, Krivoy A, Szczelkun MD, Rouillon C, Seidel R. Single-Molecule Insight Into Target Recognition by CRISPR-Cas Complexes. Methods Enzymol 2016; 582:239-273. [PMID: 28062037 DOI: 10.1016/bs.mie.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ribonucleoprotein (RNP) complexes from CRISPR-Cas systems have attracted enormous interest since they can be easily and flexibly reprogrammed to target any desired locus for genome engineering and gene regulation applications. Basis for the programmability is a short RNA (crRNA) inside these complexes that recognizes the target nucleic acid by base pairing. For CRISPR-Cas systems that target double-stranded DNA this results in local DNA unwinding and formation of a so-called R-loop structure. Here we provide an overview how this target recognition mechanism can be dissected in great detail at the level of a single molecule. Specifically, we demonstrate how magnetic tweezers are applied to measure the local DNA unwinding at the target in real time. To this end we introduce the technique and the measurement principle. By studying modifications of the consensus target sequence, we show how different sequence elements contribute to the target recognition mechanism. From these data, a unified target recognition mechanism can be concluded for the RNPs Cascade and Cas9 from types I and II CRISPR-Cas systems. R-loop formation is hereby initiated on the target at an upstream element, called protospacer adjacent motif (PAM), from which the R-loop structure zips directionally toward the PAM-distal end of the target. At mismatch positions, the R-loop propagation stalls and further propagation competes with collapse of the structure. Upon full R-loop zipping conformational changes within the RNPs trigger degradation of the DNA target. This represents a shared labor mechanism in which zipping between nucleic acid strands is the actual target recognition mechanism while sensing of the R-loop arrival at the PAM-distal end just verifies the success of the full zipping.
Collapse
Affiliation(s)
- M Rutkauskas
- Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany
| | - A Krivoy
- Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany; Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - M D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - C Rouillon
- Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany.
| | - R Seidel
- Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS One 2016; 11:e0165078. [PMID: 27820823 PMCID: PMC5098787 DOI: 10.1371/journal.pone.0165078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo.
Collapse
|
34
|
Ordu O, Lusser A, Dekker NH. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 2016; 8:33-49. [PMID: 28058066 PMCID: PMC5167136 DOI: 10.1007/s12551-016-0212-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic DNA is tightly packed into a hierarchically ordered structure called chromatin in order to fit into the micron-scaled nucleus. The basic unit of chromatin is the nucleosome, which consists of a short piece of DNA wrapped around a core of eight histone proteins. In addition to their role in packaging DNA, nucleosomes impact the regulation of essential nuclear processes such as replication, transcription, and repair by controlling the accessibility of DNA. Thus, knowledge of this fundamental DNA-protein complex is crucial for understanding the mechanisms of gene control. While structural and biochemical studies over the past few decades have provided key insights into both the molecular composition and functional aspects of nucleosomes, these approaches necessarily average over large populations and times. In contrast, single-molecule methods are capable of revealing features of subpopulations and dynamic changes in the structure or function of biomolecules, rendering them a powerful complementary tool for probing mechanistic aspects of DNA-protein interactions. In this review, we highlight how these single-molecule approaches have recently yielded new insights into nucleosomal and subnucleosomal structures and dynamics.
Collapse
Affiliation(s)
- Orkide Ordu
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H. Dekker
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| |
Collapse
|
35
|
Abstract
The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.
Collapse
Affiliation(s)
- Jie Ma
- School of Physics ; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, PRC
| | - Michelle D Wang
- Department of Physics - Laboratory of Atomic and Solid State Physics ; Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
36
|
Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J Struct Biol 2016; 197:26-36. [PMID: 27368129 DOI: 10.1016/j.jsb.2016.06.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022]
Abstract
Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come.
Collapse
|
37
|
Tokuda JM, Pabit SA, Pollack L. Protein-DNA and ion-DNA interactions revealed through contrast variation SAXS. Biophys Rev 2016; 8:139-149. [PMID: 27551324 PMCID: PMC4991782 DOI: 10.1007/s12551-016-0196-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Understanding how DNA carries out its biological roles requires knowledge of its interactions with biological partners. Since DNA is a polyanionic polymer, electrostatic interactions contribute significantly. These interactions are mediated by positively charged protein residues or charge compensating cations. Direct detection of these partners and/or their effect on DNA conformation poses challenges, especially for monitoring conformational dynamics in real time. Small-angle x-ray scattering (SAXS) is uniquely sensitive to both the conformation and local environment (i.e. protein partner and associated ions) of the DNA. The primary challenge of studying multi-component systems with SAXS lies in resolving how each component contributes to the measured scattering. Here, we review two contrast variation (CV) strategies that enable targeted studies of the structures of DNA or its associated partners. First, solution contrast variation enables measurement of DNA conformation within a protein-DNA complex by masking out the protein contribution to the scattering profile. We review a specific example, in which the real-time unwrapping of DNA from a nucleosome core particle is measured during salt-induced disassembly. The second method, heavy atom isomorphous replacement, reports the spatial distribution of the cation cloud around duplex DNA by exploiting changes in the scattering strength of cations with varying atomic numbers. We demonstrate the application of this approach to provide the spatial distribution of monovalent cations (Na+, K+, Rb+, Cs+) around a standard 25-base pair DNA. The CV strategies presented here are valuable tools for understanding DNA interactions with its biological partners.
Collapse
Affiliation(s)
- Joshua M. Tokuda
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
38
|
Nam GM, Arya G. Free-energy landscape of mono- and dinucleosomes: Enhanced rotational flexibility of interconnected nucleosomes. Phys Rev E 2016; 93:032406. [PMID: 27078389 DOI: 10.1103/physreve.93.032406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 06/05/2023]
Abstract
The nucleosome represents the basic unit of eukaryotic genome organization, and its conformational fluctuations play a crucial role in various cellular processes. Here we provide insights into the flipping transition of a nucleosome by computing its free-energy landscape as a function of the linking number and nucleosome orientation using the density-of-states Monte Carlo approach. To investigate how the energy landscape is affected by the presence of neighboring nucleosomes in a chromatin fiber, we also compute the free-energy landscape for a dinucleosome array. We find that the mononucleosome is bistable between conformations with negatively and positively crossed linkers while the conformation with open linkers appears as a transition state. The dinucleosome exhibits a markedly different energy landscape in which the conformation with open linkers populates not only the transition state but also the global minimum. This enhanced stability of the open state is attributed to increased rotational flexibility of nucleosomes arising from their mechanical coupling with neighboring nucleosomes. Our results provide a possible mechanism by which chromatin may enhance the accessibility of its DNA and facilitate the propagation and mitigation of DNA torsional stresses.
Collapse
Affiliation(s)
- Gi-Moon Nam
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0448, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0448, USA
| |
Collapse
|
39
|
Abstract
Condensins are large protein complexes that play a central role in chromosome organization and segregation in the three domains of life. They display highly characteristic, rod-shaped structures with SMC (structural maintenance of chromosomes) ATPases as their core subunits and organize large-scale chromosome structure through active mechanisms. Most eukaryotic species have two distinct condensin complexes whose balanced usage is adapted flexibly to different organisms and cell types. Studies of bacterial condensins provide deep insights into the fundamental mechanisms of chromosome segregation. This Review surveys both conserved features and rich variations of condensin-based chromosome organization and discusses their evolutionary implications.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
40
|
Nazarov I, Chekliarova I, Rychkov G, Ilatovskiy AV, Crane-Robinson C, Tomilin A. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence. Biochimie 2015; 121:5-12. [PMID: 26586109 DOI: 10.1016/j.biochi.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.
Collapse
Affiliation(s)
- Igor Nazarov
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia.
| | - Iana Chekliarova
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| | - Georgy Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, Saint-Petersburg, RF, 195251, Russia; Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Colyn Crane-Robinson
- Biophysics Laboratories, St. Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Alexey Tomilin
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| |
Collapse
|
41
|
Vlijm R, Lee M, Ordu O, Boltengagen A, Lusser A, Dekker NH, Dekker C. Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes. PLoS One 2015; 10:e0141267. [PMID: 26506534 PMCID: PMC4623960 DOI: 10.1371/journal.pone.0141267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/05/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic nucleosomes consists of an (H3-H4)2 tetramer and two H2A-H2B dimers, around which 147 bp of DNA are wrapped in 1.7 left-handed helical turns. During chromatin assembly, the (H3-H4)2 tetramer binds first, forming a tetrasome that likely constitutes an important intermediate during ongoing transcription. We recently showed that (H3-H4)2 tetrasomes spontaneously switch between a left- and right-handed wrapped state of the DNA, a phenomenon that may serve to buffer changes in DNA torque induced by RNA polymerase in transcription. Within nucleosomes of actively transcribed genes, however, canonical H3 is progressively replaced by its variant H3.3. Consequently, one may ask if and how the DNA chirality dynamics of tetrasomes is altered by H3.3. Recent findings that H3.3-containing nucleosomes result in less stable and less condensed chromatin further underline the need to study the microscopic underpinnings of H3.3-containing tetrasomes and nucleosomes. Here we report real-time single-molecule studies of (H3.3-H4)2 tetrasome dynamics using Freely Orbiting Magnetic Tweezers and Electromagnetic Torque Tweezers. We find that the assembly of H3.3-containing tetrasomes and nucleosomes by the histone chaperone Nucleosome Assembly Protein 1 (NAP1) occurs in an identical manner to that of H3-containing tetrasomes and nucleosomes. Likewise, the flipping behavior of DNA handedness in tetrasomes is not impacted by the presence of H3.3. We also examine the effect of free NAP1, H3.3, and H4 in solution on flipping behavior and conclude that the probability for a tetrasome to occupy the left-handed state is only slightly enhanced by the presence of free protein. These data demonstrate that the incorporation of H3.3 does not alter the structural dynamics of tetrasomes, and hence that the preferred incorporation of this histone variant in transcriptionally active regions does not result from its enhanced ability to accommodate torsional stress, but rather may be linked to specific chaperone or remodeler requirements or communication with the nuclear environment.
Collapse
Affiliation(s)
- Rifka Vlijm
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Mina Lee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Orkide Ordu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anastasiya Boltengagen
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Nynke H. Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- * E-mail: (NHD); (CD)
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- * E-mail: (NHD); (CD)
| |
Collapse
|
42
|
Díaz-Ingelmo O, Martínez-García B, Segura J, Valdés A, Roca J. DNA Topology and Global Architecture of Point Centromeres. Cell Rep 2015; 13:667-677. [PMID: 26489472 DOI: 10.1016/j.celrep.2015.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/08/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
DNA is wrapped in a left-handed fashion around histone octasomes containing the centromeric histone H3 variant CENP-A. However, DNA topology studies have suggested that DNA is wrapped in a right-handed manner around the CENP-A nucleosome that occupies the yeast point centromere. Here, we determine the DNA linking number difference (ΔLk) stabilized by the yeast centromere and the contribution of the centromere determining elements (CDEI, CDEII, and CDEIII). We show that the intrinsic architecture of the yeast centromere stabilizes +0.6 units of ΔLk. This topology depends on the integrity of CDEII and CDEIII, but it is independent of cbf1 binding to CDEI and of the variable length of CDEII. These findings suggest that the interaction of the CBF3 complex with CDEIII and a distal CDEII segment configures a right-handed DNA loop that excludes CDEI. This loop is then occupied by a CENP-A histone complex, which does not have to be inherently right-handed.
Collapse
Affiliation(s)
- Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain.
| |
Collapse
|
43
|
Eeftens JM, van der Torre J, Burnham DR, Dekker C. Copper-free click chemistry for attachment of biomolecules in magnetic tweezers. BMC BIOPHYSICS 2015; 8:9. [PMID: 26413268 PMCID: PMC4582843 DOI: 10.1186/s13628-015-0023-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces, since the molecule of interest can detach from the attachment points at the surface or the bead. Whereas many recipes for attachment of biopolymers have been developed, most methods do not suffice, as the molecules break at high force, or the attachment chemistry leads to nonspecific cross reactions with proteins. RESULTS Here, we demonstrate a novel attachment method using copper-free click chemistry, where a DBCO-tagged DNA molecule is bound to an azide-functionalized surface. We use this new technique to covalently attach DNA to a flow cell surface. We show that this technique results in covalently linked tethers that are torsionally constrained and withstand very high forces (>100pN) in magnetic tweezers. CONCLUSIONS This novel anchoring strategy using copper-free click chemistry allows to specifically and covalently link biomolecules, and conduct high-force single-molecule experiments. Excitingly, this advance opens up the possibility for single-molecule experiments on DNA-protein complexes and molecules that are taken directly from cell lysate.
Collapse
Affiliation(s)
- Jorine M Eeftens
- Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands
| | - Daniel R Burnham
- Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands
| |
Collapse
|