1
|
Yu X, Jembere F, Takehara-Nishiuchi K. Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Sci Rep 2022; 12:11995. [PMID: 35835794 PMCID: PMC9283438 DOI: 10.1038/s41598-022-15886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The nucleus reuniens (RE) is necessary for memories dependent on the interaction between the medial prefrontal cortex (mPFC) and hippocampus (HPC). One example is trace eyeblink conditioning, in which the mPFC exhibits differential activity to neutral conditioned stimuli (CS) depending on their contingency with an aversive unconditioned stimulus (US). To test if this relevancy signal is routed to the RE, we photometrically recorded mPFC axon terminals within the RE and tracked their changes with learning. As a comparison, we measured prefrontal terminal activity in the mediodorsal thalamus (MD), which lacks connectivity with the HPC. In naïve male rats, prefrontal terminals within the RE were not strongly activated by tone or light. As the rats associated one of the stimuli (CS+) with the US, terminals gradually increased their response to the CS+ but not the other stimulus (CS-). In contrast, stimulus-evoked responses of prefrontal terminals within the MD were strong even before conditioning. They also became augmented only to the CS+ in the first conditioning session; however, the degree of activity differentiation did not improve with learning. These findings suggest that associative learning selectively increased mPFC output to the RE, signaling the behavioral relevance of sensory stimuli.
Collapse
Affiliation(s)
- Xiaotian Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| | - Fasika Jembere
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Tu G, Halawa A, Yu X, Gillman S, Takehara-Nishiuchi K. Outcome-Locked Cholinergic Signaling Suppresses Prefrontal Encoding of Stimulus Associations. J Neurosci 2022; 42:4202-4214. [PMID: 35437276 PMCID: PMC9121825 DOI: 10.1523/jneurosci.1969-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is thought to control arousal, attention, and learning by slowly modulating cortical excitability and plasticity. Recent studies, however, discovered that cholinergic neurons emit precisely timed signals about the aversive outcome at millisecond precision. To investigate the functional relevance of such phasic cholinergic signaling, we manipulated and monitored cholinergic terminals in the mPFC while male mice associated a neutral conditioned stimulus (CS) with mildly aversive eyelid shock (US) over a short temporal gap. Optogenetic inhibition of cholinergic terminals during the US promoted the formation of the CS-US association. On the contrary, optogenetic excitation of cholinergic terminals during the US blocked the association formation. The bidirectional behavioral effects paralleled the corresponding change in the expression of an activity-regulated gene, c-Fos in the mPFC. In contrast, optogenetic inhibition of cholinergic terminals during the CS impaired associative learning, whereas their excitation had marginal effects. In parallel, photometric recording from cholinergic terminals in the mPFC revealed strong innate phasic responses to the US. With subsequent CS-US pairings, cholinergic terminals weakened the responses to the US while developing strong responses to the CS. The across-session changes in the CS- and US-evoked terminal responses were correlated with associative memory strength. These findings suggest that phasic cholinergic signaling in the mPFC exerts opposite effects on aversive associative learning depending on whether it is emitted by the outcome or the cue.SIGNIFICANCE STATEMENT Drugs compensating for the decline of acetylcholine (ACh) are used for cognitive impairment, such as Alzheimer's disease. However, their beneficial effects are limited, demanding new strategies based on better understandings of how ACh modulates cognition. Here, we report that by manipulating ACh signals in the mPFC, we can control the strength of aversive associative learning in mice. Specifically, the suppression of ACh signals during an aversive outcome facilitated its association with a preceding cue. In contrast, the suppression of ACh signals during the cue impaired learning. Considering that this paradigm depends on the brain regions affected in Alzheimer's disease, our findings indicate that precisely timed control of ACh signals is essential to refine ACh-based strategies for cognitive enhancement.
Collapse
Affiliation(s)
- Gaqi Tu
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adel Halawa
- Human Biology Program, University of Toronto, Toronto, Ontario M5S 3J6, Canada
| | - Xiaotian Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Samuel Gillman
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Human Biology Program, University of Toronto, Toronto, Ontario M5S 3J6, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
3
|
Lin C, Oh MM, Disterhoft JF. Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Front Aging Neurosci 2022; 14:838513. [PMID: 35360205 PMCID: PMC8963507 DOI: 10.3389/fnagi.2022.838513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
With aging comes a myriad of different disorders, and cognitive decline is one of them. Studies have consistently shown a decline amongst aged subjects in their ability to acquire and maintain temporal associative memory. Defined as the memory of the association between two objects that are separated in time, temporal associative memory is dependent on neocortical structures such as the prefrontal cortex and temporal lobe structures. For this memory to be acquired, a mental trace of the first stimulus is necessary to bridge the temporal gap so the two stimuli can be properly associated. Persistent firing, the ability of the neuron to continue to fire action potentials even after the termination of a triggering stimulus, is one mechanism that is posited to support this mental trace. A recent study demonstrated a decline in persistent firing ability in pyramidal neurons of layer III of the lateral entorhinal cortex with aging, contributing to learning impairments in temporal associative memory acquisition. In this work, we explore the potential ways persistent firing in lateral entorhinal cortex (LEC) III supports temporal associative memory, and how aging may disrupt this mechanism within the temporal lobe system, resulting in impairment in this crucial behavior.
Collapse
|
4
|
Yu XT, Yu J, Choi A, Takehara-Nishiuchi K. Lateral entorhinal cortex supports the development of prefrontal network activity that bridges temporally discontiguous stimuli. Hippocampus 2021; 31:1285-1299. [PMID: 34606152 DOI: 10.1002/hipo.23389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/16/2023]
Abstract
The lateral entorhinal cortex (LEC) is an essential component of the brain circuitry supporting long-term memory by serving as an interface between the hippocampus and neocortex. Dysfunction of the LEC affects sensory coding in the hippocampus, leading to a view that the LEC provides the hippocampus with highly processed sensory information. It remains unclear, however, how the LEC modulates neural processing in the neocortical regions. To address this point, we pharmacologically inactivated the LEC of male rats during a temporal associative learning task and examined its impact on local network activity in one of the LEC's efferent targets, the prelimbic region of the medial prefrontal cortex (mPFC). Rats were exposed to two neutral stimuli, one of which was paired with an aversive eyelid shock over a short temporal delay. The LEC inhibition reduced the expression of anticipatory blinking responses to the reinforced stimuli without increasing responses to nonreinforced stimuli. In control rats, both the reinforced and nonreinforced stimuli evoked a short-lived, wide-band increase in the prelimbic network activity. With learning, the initial increase of gamma-band activity started to extend into the interval between the reinforced neutral stimulus and the eyelid shock. LEC inhibition attenuated the learning-induced sustained activity, without affecting the initial transient activity. These results suggest that the integrity of LEC is necessary for the formation of temporal stimulus associations and its neural correlates in the mPFC. Given the minimal effects on the innate network responses to sensory stimuli, the LEC appears not to be the main source of sensory inputs to the mPFC; rather it may provide a framework that shapes the mPFC network response to behaviorally relevant cues.
Collapse
Affiliation(s)
- Xiaotian Tag Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jessica Yu
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Allison Choi
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. ACTA ACUST UNITED AC 2021; 28:319-328. [PMID: 34400533 PMCID: PMC8372565 DOI: 10.1101/lm.052589.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Kitamura
- Department of Psychiatry.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Xing B, Mack NR, Guo KM, Zhang YX, Ramirez B, Yang SS, Lin L, Wang DV, Li YC, Gao WJ. A Subpopulation of Prefrontal Cortical Neurons Is Required for Social Memory. Biol Psychiatry 2021; 89:521-531. [PMID: 33190846 PMCID: PMC7867585 DOI: 10.1016/j.biopsych.2020.08.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.
Collapse
Affiliation(s)
- Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kai-Ming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yu-Xiang Zhang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Billy Ramirez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Impact of Acute and Persistent Excitation of Prelimbic Pyramidal Neurons on Motor Activity and Trace Fear Learning. J Neurosci 2021; 41:960-971. [PMID: 33402420 DOI: 10.1523/jneurosci.2606-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Drug-induced neuroadaptations in the mPFC have been implicated in addictive behaviors. Repeated cocaine exposure has been shown to increase pyramidal neuron excitability in the prelimbic (PL) region of the mouse mPFC, an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity. After establishing that this neuroadaptation is not seen in adjacent GABA neurons, we used viral GIRK channel ablation and complementary chemogenetic approaches to selectively enhance PL pyramidal neuron excitability in adult mice, to evaluate the impact of this form of plasticity on PL-dependent behaviors. GIRK channel ablation decreased somatodendritic GABAB receptor-dependent signaling and rheobase in PL pyramidal neurons. This manipulation also enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or trace fear learning. In contrast, selective chemogenetic excitation of PL pyramidal neurons, or chemogenetic inhibition of PL GABA neurons, increased baseline and cocaine-induced activity and disrupted trace fear learning. These effects were mirrored in male mice by selective excitation of PL pyramidal neurons projecting to the VTA, but not NAc or BLA. Collectively, these data show that manipulations enhancing the excitability of PL pyramidal neurons, and specifically those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure in mice.SIGNIFICANCE STATEMENT Prolonged exposure to drugs of abuse triggers neuroadaptations that promote core features of addiction. Understanding these neuroadaptations and their implications may suggest interventions capable of preventing or treating addiction. While previous work showed that repeated cocaine exposure increased the excitability of pyramidal neurons in the prelimbic cortex (PL), the behavioral implications of this neuroadaptation remained unclear. Here, we used neuron-specific manipulations to evaluate the impact of increased PL pyramidal neuron excitability on PL-dependent behaviors. Acute or persistent excitation of PL pyramidal neurons potentiated cocaine-induced motor activity and disrupted trace fear conditioning, effects replicated by selective excitation of the PL projection to the VTA. Our work suggests that hyperexcitability of this projection drives key behavioral hallmarks of addiction.
Collapse
|
8
|
Prefrontal Neural Ensembles Develop Selective Code for Stimulus Associations within Minutes of Novel Experiences. J Neurosci 2020; 40:8355-8366. [PMID: 32989098 DOI: 10.1523/jneurosci.1503-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/25/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Prevailing theories posit that the hippocampus rapidly learns stimulus conjunctions during novel experiences, whereas the neocortex learns slowly through subsequent, off-line interaction with the hippocampus. Parallel evidence, however, shows that the medial prefrontal cortex (mPFC; a critical node of the neocortical network supporting long-term memory storage) undergoes rapid modifications of gene expression, synaptic structure, and physiology at the time of encoding. These observations, along with impaired learning with disrupted mPFC, suggest that mPFC neurons may exhibit rapid neural plasticity during novel experiences; however, direct empirical evidence is lacking. We extracellularly recorded action potentials of cells in the prelimbic region of the mPFC, while male rats received a sequence of stimulus presentations for the first time in life. Moment-to-moment tracking of neural ensemble firing patterns revealed that the prelimbic network activity exhibited an abrupt transition within 1 min after the first encounter of an aversive but not neutral stimulus. This network-level change was driven by ∼15% of neurons that immediately elevated their spontaneous firing rates (FRs) and developed firing responses to a neutral stimulus preceding the aversive stimulus within a few instances of their pairings. When a new sensory stimulus was paired with the same aversive stimulus, about half of these neurons generalized firing responses to the new stimulus association. Thus, prelimbic neurons are capable of rapidly forming ensemble codes for novel stimulus associations within minutes. This circuit property may enable the mPFC to rapidly detect and selectively encode the central content of novel experiences.SIGNIFICANCE STATEMENT During a new experience, a region of the brain, called the hippocampus, rapidly forms its memory and later instructs another region, called the neocortex, that stores its content. Consistent with this dominant view, cells in the neocortex gradually strengthen the selectivity for the memory content over weeks after novel experiences. However, we still do not know precisely when these cells begin to develop the selectivity. We found that neocortical cells were capable of forming the selectivity for ongoing events within a few minutes of new experiences. This finding provides support for an alternative view that the neocortex works with, but not follows, the hippocampus to form new memories.
Collapse
|
9
|
Functional interaction of ventral hippocampal CA1 region and prelimbic cortex contributes to the encoding of contextual fear association of stimuli separated in time. Neurobiol Learn Mem 2020; 171:107216. [DOI: 10.1016/j.nlm.2020.107216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/22/2022]
|
10
|
Takehara-Nishiuchi K. Prefrontal-hippocampal interaction during the encoding of new memories. Brain Neurosci Adv 2020; 4:2398212820925580. [PMID: 32954000 PMCID: PMC7479858 DOI: 10.1177/2398212820925580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
The hippocampus rapidly forms associations among ongoing events as they unfold and later instructs the gradual stabilisation of their memory traces in the neocortex. Although this two-stage model of memory consolidation has gained substantial empirical support, parallel evidence from rodent studies suggests that the neocortex, in particular the medial prefrontal cortex, might work in concert with the hippocampus during the encoding of new experiences. This opinion article first summarises findings from behavioural, electrophysiological, and molecular studies in rodents that uncovered immediate changes in synaptic connectivity and neural selectivity in the medial prefrontal cortex during and shortly after novel experiences. Based on these findings, I then propose a model positing that the medial prefrontal cortex and hippocampus might use different strategies to encode information during novel experiences, leading to the parallel formation of complementary memory traces in the two regions. The hippocampus captures moment-to-moment changes in incoming inputs with accurate spatial and temporal contexts, whereas the medial prefrontal cortex may sort the inputs based on their similarity and integrates them over time. These processes of pattern recognition and integration enable the medial prefrontal cortex to, in real time, capture the central content of novel experience and emit relevancy signal that helps to enhance the contrast between the relevant and incidental features of the experience. This hypothesis serves as a framework for future investigations on the potential top-down modulation that the medial prefrontal cortex may exert over the hippocampus to enable the selective, perhaps more intelligent encoding of new information.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology,
University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems
Biology, University of Toronto, Toronto, ON, Canada
- Neuroscience Program, University
of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Xing B, Morrissey MD, Takehara-Nishiuchi K. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex. J Neurophysiol 2019; 123:439-450. [PMID: 31851558 DOI: 10.1152/jn.00565.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prefrontal cortex has been implicated in various cognitive processes, including working memory, executive control, decision making, and relational learning. One core computational requirement underlying all these processes is the integration of information across time. When rodents and rabbits associate two temporally discontiguous stimuli, some neurons in the medial prefrontal cortex (mPFC) change firing rates in response to the preceding stimulus and sustain the firing rate during the subsequent temporal interval. These firing patterns are thought to serve as a mechanism to buffer the previously presented stimuli and signal the upcoming stimuli; however, how these critical properties are distributed across different neuron types remains unknown. We investigated the firing selectivity of regular-firing, burst-firing, and fast-spiking neurons in the prelimbic region of the mPFC while rats associated two neutral conditioned stimuli (CS) with one aversive stimulus (US). Analyses of firing patterns of individual neurons and neuron ensembles revealed that regular-firing neurons maintained rich information about CS identity and CS-US contingency during intervals separating the CS and US. Moreover, they further strengthened the latter selectivity with repeated conditioning sessions over a month. The selectivity of burst-firing neurons for both stimulus features was weaker than that of regular-firing neurons, indicating the difference in task engagement between two subpopulations of putative excitatory neurons. In contrast, putative inhibitory, fast-spiking neurons showed a stronger selectivity for CS identity than for CS-US contingency, suggesting their potential role in sensory discrimination. These results reveal a fine-scaled functional organization in the prefrontal network supporting the formation of temporal stimulus associations.NEW & NOTEWORTHY To associate stimuli that occurred separately in time, the brain needs to bridge the temporal gap by maintaining what was presented and predicting what would follow. We show that in rat medial prefrontal cortex, the former function is associated with a subpopulation of putative inhibitory neurons, whereas the latter is supported by a subpopulation of putative excitatory neurons. Our results reveal a distinct contribution of these microcircuit components to neural representations of temporal stimulus associations.
Collapse
Affiliation(s)
- Bohan Xing
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Mark D Morrissey
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice. J Neurosci 2019; 40:395-410. [PMID: 31727794 DOI: 10.1523/jneurosci.1496-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022] Open
Abstract
Animals selectively respond to environmental cues associated with food reward to optimize nutrient intake. Such appetitive conditioned stimulus-unconditioned stimulus (CS-US) associations are thought to be encoded in select, stable neuronal populations or neuronal ensembles, which undergo physiological modifications during appetitive conditioning. These ensembles in the medial prefrontal cortex (mPFC) control well-established, cue-evoked food seeking, but the mechanisms involved in the genesis of these ensembles are unclear. Here, we used male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally activated neurons, to reveal how dorsal mPFC neurons are recruited and modified to encode CS-US memory representations using an appetitive conditioning task. In the initial conditioning session, animals did not exhibit discriminated, cue-selective food seeking, but did so in later sessions indicating that a CS-US association was established. Using microprism-based in vivo 2-Photon imaging, we revealed that only a minority of neurons activated during the initial session was consistently activated throughout subsequent conditioning sessions and during cue-evoked memory recall. Notably, using ex vivo electrophysiology, we found that neurons activated following the initial session exhibited transient hyperexcitability. Chemogenetically enhancing the excitability of these neurons throughout subsequent conditioning sessions interfered with the development of reliable cue-selective food seeking, indicated by persistent, nondiscriminated performance. We demonstrate how appetitive learning consistently activates a subset of neurons to form a stable neuronal ensemble during the formation of a CS-US association. This ensemble may arise from a pool of hyperexcitable neurons activated during the initial conditioning session.SIGNIFICANCE STATEMENT Appetitive conditioning endows cues associated with food with the ability to guide food-seeking, through the formation of a food-cue association. Neuronal ensembles in the mPFC control established cue-evoked food-seeking. However, how neurons undergo physiological modifications and become part of an ensemble during conditioning remain unclear. We found that only a minority of dorsal mPFC neurons activated on the initial conditioning session became consistently activated during conditioning and memory recall. These initially activated neurons were also transiently hyperexcitable. We demonstrate the following: (1) how stable neuronal ensemble formation in the dorsal mPFC underlies appetitive conditioning; and (2) how this ensemble may arise from hyperexcitable neurons activated before the establishment of cue-evoked food seeking.
Collapse
|
13
|
Jarovi J, Volle J, Yu X, Guan L, Takehara-Nishiuchi K. Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events. eNeuro 2018; 5:ENEURO.0407-18.2018. [PMID: 30693310 PMCID: PMC6348453 DOI: 10.1523/eneuro.0407-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to capture the most relevant information from everyday experiences without constantly learning unimportant details is vital to survival and mental health. While decreased activity of the medial prefrontal cortex (mPFC) is associated with failed or inflexible encoding of relevant events in the hippocampus, mechanisms used by the mPFC to discern behavioral relevance of events are not clear. To address this question, we chemogenetically activated excitatory neurons in the mPFC of male rats and examined its impact on local network activity and differential associative learning dependent on the hippocampus. Rats were exposed to two neutral stimuli in two environments whose contingency with an aversive stimulus changed systematically across days. Over 2 weeks of differential and reversal learning, theta band activity began to ramp up toward the expected onset of the aversive stimulus, and this ramping activity tracked the subsequent shift of the set (stimulus modality to environment) predictive of the aversive stimulus. With chemogenetic mPFC activation, the ramping activity emerged within a few sessions of differential learning, which paralleled faster learning and stronger correlations between the ramping activity and conditioned responses. Chemogenetic mPFC activity, however, did not affect the adjustment of ramping activity or behavior during reversal learning or set-shifting, suggesting that the faster learning was not because of a general enhancement of attention, sensory, or motor processing. Thus, the dynamics of the mPFC network activation during events provide a relevance-signaling mechanism through which the mPFC exerts executive control over the encoding of those events in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology
- Department of Psychology
- Neuroscience Program, University of Toronto, Toronto M5S 3G3, Canada
| |
Collapse
|
14
|
Pilkiw M, Takehara-Nishiuchi K. Neural representations of time-linked memory. Neurobiol Learn Mem 2018; 153:57-70. [PMID: 29614377 DOI: 10.1016/j.nlm.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Many cognitive processes, such as episodic memory and decision making, rely on the ability to form associations between two events that occur separately in time. The formation of such temporal associations depends on neural representations of three types of information: what has been presented (trace holding), what will follow (temporal expectation), and when the following event will occur (explicit timing). The present review seeks to link these representations with firing patterns of single neurons recorded while rodents and non-human primates associate stimuli, outcomes, and motor responses over time intervals. Across these studies, two distinct firing patterns were observed in the hippocampus, neocortex, and striatum: some neurons change firing rates during or shortly after the stimulus presentation and sustain the firing rate stably or sidlingly during the subsequent intervals (tonic firings). Other neurons transiently change firing rates during a specific moment within the time intervals (phasic firings), and as a group, they form a sequential firing pattern that covers the entire interval. Clever task designs used in some of these studies collectively provide evidence that both tonic and phasic firing responses represent trace holding, temporal expectation, and explicit timing. Subsequently, we applied machine-learning based classification approaches to the two firing patterns within the same dataset collected from rat medial prefrontal cortex during trace eyeblink conditioning. This quantitative analysis revealed that phasic-firing patterns showed greater selectivity for stimulus identity and temporal position than tonic-firing patterns. Our summary illuminates distributed neural representations of temporal association in the forebrain and generates several ideas for future investigations.
Collapse
Affiliation(s)
- Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada; Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto M5S 3G3, Canada.
| |
Collapse
|
15
|
Kitamura T. Driving and regulating temporal association learning coordinated by entorhinal-hippocampal network. Neurosci Res 2017; 121:1-6. [DOI: 10.1016/j.neures.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
16
|
Tanninen SE, Nouriziabari B, Morrissey MD, Bakir R, Dayton RD, Klein RL, Takehara-Nishiuchi K. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol Aging 2017; 58:151-162. [PMID: 28735144 DOI: 10.1016/j.neurobiolaging.2017.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
A neural signature of asymptomatic preclinical Alzheimer's disease (AD) is disrupted connectivity between brain regions; however, its underlying mechanisms remain unknown. Here, we tested whether a preclinical pathologic feature, tau aggregation in the entorhinal cortex (EC) is sufficient to disrupt the coordination of local field potentials (LFPs) between its efferent regions. P301L-mutant human tau or green fluorescent protein (GFP) was virally overexpressed in the EC of adult rats. LFPs were recorded from the dorsal hippocampus and prelimbic medial prefrontal cortex while the rats underwent trace eyeblink conditioning where they learned to associate 2 stimuli separated by a short time interval. In GFP-expressing rats, the 2 regions strengthened phase-phase and amplitude-amplitude couplings of theta and gamma oscillations during the interval separating the paired stimuli. Despite normal memory acquisition, this learning-related, inter-region oscillatory coupling was attenuated in the tau-expressing rats while prefrontal phase-amplitude theta-gamma cross-frequency coupling was elevated. Thus, EC tau aggregation caused aberrant long-range circuit activity during associative learning, identifying a culprit for the neural signature of preclinical AD stages.
Collapse
Affiliation(s)
| | - Bardia Nouriziabari
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Mark D Morrissey
- Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience Program, University of Toronto, Toronto, Canada
| | - Rami Bakir
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Robert D Dayton
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada; Neuroscience Program, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Dong N, Feng ZP. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis. Front Cell Neurosci 2017; 10:297. [PMID: 28101006 PMCID: PMC5209385 DOI: 10.3389/fncel.2016.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning model of aerial respiration in the mollusk Lymnaea stagnalis (L. stagnalis) to study the role of basal firing activity of the respiratory pacemaker neuron Right Pedal Dorsal 1 (RPeD1) as a determinant of aversive long-term memory (LTM) formation. We investigated the relationship between basal aerial respiration behavior and RPeD1 firing activity, and examined aversive LTM formation and neuronal plasticity in animals exhibiting different basal aerial respiration behavior. We report that animals with higher basal aerial respiration behavior exhibited early responses to operant conditioning and better aversive LTM formation. Early behavioral response to the conditioning procedure was associated with biphasic enhancements in the membrane potential, spontaneous firing activity and gain of firing response, with an early phase spanning the first 2 h after conditioning and a late phase that is observed at 24 h. Taken together, we provide the first evidence suggesting that lower neuronal activity at the time of learning may be correlated with better memory formation in spontaneously active neurons. Our findings provide new insights into the diversity of cellular rules of plasticity underlying memory formation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|