1
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
2
|
Ren J, Yao X, Yang M, Cheng S, Wu D, Xu K, Li R, Zhang H, Zhang D. Kinesin Family Member-18A (KIF18A) Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:1274-1286. [PMID: 38446308 PMCID: PMC11026273 DOI: 10.1007/s10620-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Han Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- , Room 706, Chongyi Building, 1 Yixue Yuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Villa-Consuegra S, Tallada VA, Jimenez J. Aurora B kinase erases monopolar microtubule-kinetochore arrays at the meiosis I-II transition. iScience 2023; 26:108339. [PMID: 38026180 PMCID: PMC10654595 DOI: 10.1016/j.isci.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
During meiosis, faithful chromosome segregation requires monopolar spindle microtubule-kinetochore arrays in MI to segregate homologous chromosomes, but bipolar in MII to segregate sister chromatids. Using fission yeasts, we found that the universal Aurora B kinase localizes to kinetochores in metaphase I and in the mid-spindle during anaphase I, as in mitosis; but in the absence of an intervening S phase, the importin α Imp1 propitiates its release from the spindle midzone to re-localize at kinetochores during meiotic interkinesis. We show that "error-correction" activity of kinetochore re-localized Aurora B becomes essential to erase monopolar arrangements from anaphase I, a prerequisite to satisfy the spindle assembly checkpoint (SAC) and to generate proper bipolar arrays at the onset of MII. This microtubule-kinetochore resetting activity of Aurora B at the MI-MII transition is required to prevent chromosome missegregation in meiosis II, a type of error often associated with birth defects and infertility in humans.
Collapse
Affiliation(s)
- Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
4
|
Wu Z, Zhuo T, Li Z, Zhu Y, Wu J, Liang G, Dai L, Wang Y, Tan X, Chen M. High SGO2 predicted poor prognosis and high therapeutic value of lung adenocarcinoma and promoted cell proliferation, migration, invasion, and epithelial-to-mesenchymal transformation. J Cancer 2023; 14:2301-2314. [PMID: 37576392 PMCID: PMC10414046 DOI: 10.7150/jca.86285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Shugoshin 2 (SGO2), a component of the cell division cohesion complex, is involved in both mitotic and meiotic processes. Despite being overexpressed in various malignant tumors and is associated with poor prognosis, its exact role in lung adenocarcinoma (LUAD) and its biological effects on lung cancer cells are not well understood. Methods: The transcriptomics data and clinical information for LUAD were obtained from TCGA and GEO, and DEGs associated with prognostic risk factors were screened using Cox regression analysis and chi-square testing. Identify these gene functions using correlation heatmaps, protein interaction networks (PPIs), and KEGG enrichment assays. The expression of SGO2 in tissues was verified by PCR and IHC, and the prognostic value of SGO2 in LUAD was evaluated by survival analysis. In addition, the effects of SGO2 knockdown on lung cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were studied in vitro. After that, the TIMER database and single-sample GSEA (ssGSEA) analysis were used to investigate the correlation between SGO2 and immune infiltration. Finally, the tumor mutational burden (TMB) of different SGO2 clusters and the efficacy of the two clusters in multiple treatments were evaluated. Results: High-risk genes associated with poor prognosis in LUAD are involved in cell cycle regulation and proliferation. Among these genes, SGO2 exhibited high expression in LUAD and corresponded with the TNM stage. Furthermore, the knockdown of SGO2 led to a decrease in the proliferation, migration, invasion, and EMT processes of lung cancer cells. Notably, high SGO2 expression may have poorer anti-tumor immunity and may therefore be more suitable for immunotherapy to re-establish immune function, while its high expression with a higher TMB could enable LUAD to benefit from multiple therapies. Conclusion: Our findings suggest that SGO2 may be a promising prognostic biomarker for LUAD, particularly in regulating the cell cycle and benefiting from multiple therapies.
Collapse
Affiliation(s)
- Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejing Wu
- Department of Ophthalmology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guanbiao Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Sane A, Sridhar S, Sanyal K, Ghosh SK. Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassembly. Mol Microbiol 2021; 116:1079-1098. [PMID: 34407255 DOI: 10.1111/mmi.14796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Shugoshin proteins are evolutionarily conserved across eukaryotes, with some species-specific cellular functions, ensuring the fidelity of chromosome segregation. They act as adaptors at various subcellular locales to mediate several protein-protein interactions in a spatio-temporal manner. Here, we characterize shugoshin (Sgo1) in the human fungal pathogen Candida albicans. We observe that Sgo1 retains its centromeric localization and performs its conserved functions of regulating the sister chromatid biorientation, centromeric condensin localization, and maintenance of chromosomal passenger complex (CPC). We identify novel roles of Sgo1 as a spindle assembly checkpoint (SAC) component with functions in maintaining a prolonged SAC response by retaining Mad2 and Bub1 at the kinetochores in response to improper kinetochore-microtubule attachments. Strikingly, we discover the in vivo localization of Sgo1 along the length of the mitotic spindle. Our results indicate that Sgo1 performs a hitherto unknown function of facilitating timely disassembly of the mitotic spindle in C. albicans. To summarize, this study unravels a unique functional adaptation of shugoshin in maintaining genomic stability.
Collapse
Affiliation(s)
- Aakanksha Sane
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| | - Shreyas Sridhar
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kaustuv Sanyal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| |
Collapse
|
6
|
Su XB, Wang M, Schaffner C, Nerusheva OO, Clift D, Spanos C, Kelly DA, Tatham M, Wallek A, Wu Y, Rappsilber J, Jeyaprakash AA, Storchova Z, Hay RT, Marston AL. SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 2021; 220:e202005130. [PMID: 33929514 PMCID: PMC8094117 DOI: 10.1083/jcb.202005130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
During mitosis, sister chromatids attach to microtubules from opposite poles, called biorientation. Sister chromatid cohesion resists microtubule forces, generating tension, which provides the signal that biorientation has occurred. How tension silences the surveillance pathways that prevent cell cycle progression and correct erroneous kinetochore-microtubule attachments remains unclear. Here we show that SUMOylation dampens error correction to allow stable sister kinetochore biorientation and timely anaphase onset. The Siz1/Siz2 SUMO ligases modify the pericentromere-localized shugoshin (Sgo1) protein before its tension-dependent release from chromatin. Sgo1 SUMOylation reduces its binding to protein phosphatase 2A (PP2A), and weakening of this interaction is important for stable biorientation. Unstable biorientation in SUMO-deficient cells is associated with persistence of the chromosome passenger complex (CPC) at centromeres, and SUMOylation of CPC subunit Bir1 also contributes to timely anaphase onset. We propose that SUMOylation acts in a combinatorial manner to facilitate dismantling of the error correction machinery within pericentromeres and thereby sharpen the metaphase-anaphase transition.
Collapse
Affiliation(s)
- Xue Bessie Su
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Menglu Wang
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Claudia Schaffner
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Olga O. Nerusheva
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Dean Clift
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David A. Kelly
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Michael Tatham
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Andreas Wallek
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yehui Wu
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Zuzana Storchova
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Adèle L. Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Krüger LK, Gélin M, Ji L, Kikuti C, Houdusse A, Théry M, Blanchoin L, Tran PT. Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth. eLife 2021; 10:67489. [PMID: 34080538 PMCID: PMC8205488 DOI: 10.7554/elife.67489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in Schizosaccharomyces pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.
Collapse
Affiliation(s)
- Lara Katharina Krüger
- Institut Curie, PSL Research University, Sorbonne Université CNRS, UMR 144, Paris, France
| | - Matthieu Gélin
- Institut de Recherche Saint Louis,U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France
| | - Liang Ji
- Institut Curie, PSL Research University, Sorbonne Université CNRS, UMR 144, Paris, France
| | - Carlos Kikuti
- Institut Curie, PSL Research University, Sorbonne Université CNRS, UMR 144, Paris, France
| | - Anne Houdusse
- Institut Curie, PSL Research University, Sorbonne Université CNRS, UMR 144, Paris, France
| | - Manuel Théry
- Institut de Recherche Saint Louis,U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.,Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, Paris, France
| | - Laurent Blanchoin
- Institut de Recherche Saint Louis,U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.,Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, Paris, France
| | - Phong T Tran
- Institut Curie, PSL Research University, Sorbonne Université CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
8
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|
9
|
Wu M, Feng G, Zhang B, Xu K, Wang Z, Cheng S, Chang C, Vyas A, Tang Z, Liu X. Phosphoproteomics Reveals Novel Targets and Phosphoprotein Networks in Cell Cycle Mediated by Dsk1 Kinase. J Proteome Res 2020; 19:1776-1787. [DOI: 10.1021/acs.jproteome.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gang Feng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou 350122, China
| | - Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Aditi Vyas
- W.M. Keck Science Center, 925 North Mills Avenue, The Claremont Colleges, Claremont, California 91711, United States
| | - Zhaohua Tang
- W.M. Keck Science Center, 925 North Mills Avenue, The Claremont Colleges, Claremont, California 91711, United States
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
10
|
Pinder C, Matsuo Y, Maurer SP, Toda T. Kinesin-8 and Dis1/TOG collaborate to limit spindle elongation from prophase to anaphase A for proper chromosome segregation in fission yeast. J Cell Sci 2019; 132:jcs232306. [PMID: 31427431 PMCID: PMC6765184 DOI: 10.1242/jcs.232306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
High-fidelity chromosome segregation relies on proper microtubule regulation. Kinesin-8 has been shown to destabilise microtubules to reduce metaphase spindle length and chromosome movements in multiple species. XMAP215/chTOG polymerases catalyse microtubule growth for spindle assembly, elongation and kinetochore-microtubule attachment. Understanding of their biochemical activity has advanced, but little work directly addresses the functionality and interplay of these conserved factors. We utilised the synthetic lethality of fission yeast kinesin-8 (Klp5-Klp6) and XMAP215/chTOG (Dis1) to study their individual and overlapping roles. We found that the non-motor kinesin-8 tailbox is essential for mitotic function; mutation compromises plus-end-directed processivity. Klp5-Klp6 induces catastrophes to control microtubule length and, surprisingly, Dis1 collaborates with kinesin-8 to slow spindle elongation. Together, they enforce a maximum spindle length for a viable metaphase-anaphase transition and limit elongation during anaphase A to prevent lagging chromatids. Our work provides mechanistic insight into how kinesin-8 negatively regulates microtubules and how this functionally overlaps with Dis1 and highlights the importance of spindle length control in mitosis.
Collapse
Affiliation(s)
- Corinne Pinder
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuzy Matsuo
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sebastian P Maurer
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Takashi Toda
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
11
|
Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast. Sci Rep 2019; 9:7336. [PMID: 31089172 PMCID: PMC6517423 DOI: 10.1038/s41598-019-43774-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/01/2019] [Indexed: 02/03/2023] Open
Abstract
Bipolar mitotic spindles play a critical part in accurate chromosome segregation. During late mitosis, spindle microtubules undergo drastic elongation in a process called anaphase B. Two kinesin motors, Kinesin-5 and Kinesin-6, are thought to generate outward forces to drive spindle elongation, and the microtubule crosslinker Ase1/PRC1 maintains structural integrity of antiparallel microtubules. However, how these three proteins orchestrate this process remains unknown. Here we explore the functional interplay among fission yeast Kinesin-5/Cut7, Kinesin-6/Klp9 and Ase1. Using total internal reflection fluorescence microscopy, we show that Klp9 forms homotetramers and that Klp9 is a processive plus end-directed motor. klp9Δase1Δ is synthetically lethal. Surprisingly, this lethality is not ascribable to the defective motor activity of Klp9; instead, it is dependent upon a nuclear localisation signal and coiled coil domains within the non-motor region. We isolated a cut7 mutant (cut7-122) that displays temperature sensitivity only in the absence of Klp9. Interestingly, cut7-122 alone is impaired in spindle elongation during anaphase B, and furthermore, cut7-122klp9Δ double mutants exhibit additive defects. We propose that Klp9 plays dual roles during anaphase B; one is motor-dependent that collaborates with Cut7 in force generation, while the other is motor-independent that ensures structural integrity of spindle microtubules together with Ase1.
Collapse
|
12
|
Laflamme G, Sim S, Leary A, Pascariu M, Vogel J, D’Amours D. Interphase Microtubules Safeguard Mitotic Progression by Suppressing an Aurora B-Dependent Arrest Induced by DNA Replication Stress. Cell Rep 2019; 26:2875-2889.e3. [DOI: 10.1016/j.celrep.2019.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
|
13
|
Meadows JC, Millar JBA. Some assembly required: Redefining the mitotic checkpoint. Mol Cell Oncol 2017; 4:e1314238. [PMID: 29209640 PMCID: PMC5706941 DOI: 10.1080/23723556.2017.1314238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
The spindle assembly checkpoint (also known as the spindle or mitotic checkpoint) is a surveillance system that ensures fidelity of chromosome segregation. Here we suggest, in light of historical and more recent evidence, that this signaling system monitors kinetochore attachment and spindle assembly by two distinct, but functionally overlapping, pathways.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Institute of Advanced Study, University of Warwick, Coventry, UK
| | - Jonathan B A Millar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Yukawa M, Kawakami T, Okazaki M, Kume K, Tang NH, Toda T. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast. Mol Biol Cell 2017; 28:3647-3659. [PMID: 29021344 PMCID: PMC5706992 DOI: 10.1091/mbc.e17-08-0497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Kinesin-5 is required for bipolar spindle assembly; yet in the absence of kinesins-5 and -14, cells can form spindles. In fission yeast, three distinct pathways compensate for their loss. Microtubule polymerase, kinesin-6, and microtubule cross-linker execute individual roles in concert at different mitotic stages in place of the two kinesins. Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoki Kawakami
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Masaki Okazaki
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|