1
|
Davidson AM, Mejía-Gómez H, Wooten BM, Marqués S, Jacobowitz M, Ugidos IF, Mostany R. Differences in motor learning-related structural plasticity of layer 2/3 parvalbumin-positive interneurons of the young and aged motor cortex. GeroScience 2024:10.1007/s11357-024-01350-6. [PMID: 39343864 DOI: 10.1007/s11357-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Changes to neuronal connectivity are believed to be a key factor in cognitive impairments associated with normal aging. Because of its effect on activities of daily living, deficient motor control is a critical type of cognitive decline to understand. Diminished inhibitory networks in the cortex are implicated in such motor control deficits, pointing to the connectivity of inhibitory cortical interneurons as an important area for study. Here, we used chronic two-photon microscopy to track the structural plasticity of en passant boutons (EPBs) of parvalbumin-positive interneurons in the mouse motor cortex in the first longitudinal, in vivo study of inhibitory interneuron synapses in the context of aging. Young (3-5 months) and aged (23-28 months) mice underwent training on the accelerating rotarod to evoke motor learning-induced structural plasticity. Our analysis reveals that, in comparison with axons from young mice, those from aged mice have fewer EPBs at baseline that also tend to be larger in size. Aged axons also express learning-related structural plasticity-like new bouton stabilization and bouton enlargement-that is less persistent than that of young axons. This study reveals striking baseline differences in young and aged axon morphology as well as differences in the deployment of learning-related structural plasticity across axons.
Collapse
Affiliation(s)
- Andrew M Davidson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hernán Mejía-Gómez
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Bryn M Wooten
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Sharai Marqués
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Jacobowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Irene F Ugidos
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Brain Institute, Tulane University, New Orleans, LA, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, USA.
- Brain Institute, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Oner M, Chen MC, Cheng PT, Lin H. Metformin inhibits nerve growth factor-induced sympathetic neuron differentiation through p35/CDK5 inhibition. Am J Physiol Cell Physiol 2024; 326:C1648-C1658. [PMID: 38682237 DOI: 10.1152/ajpcell.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Yamaguchi M. Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity. Front Neural Circuits 2024; 18:1423505. [PMID: 38841557 PMCID: PMC11150588 DOI: 10.3389/fncir.2024.1423505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The olfactory tubercle (OT) is a unique part of the olfactory cortex of the mammal brain in that it is also a component of the ventral striatum. It is crucially involved in motivational behaviors, particularly in adaptive olfactory learning. This review introduces the basic properties of the OT, its synaptic connectivity with other brain areas, and the plasticity of the connectivity associated with learning behavior. The adaptive properties of olfactory behavior are discussed further based on the characteristics of OT neuronal circuits.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
4
|
Niraula S, Yan SS, Subramanian J. Amyloid Pathology Impairs Experience-Dependent Inhibitory Synaptic Plasticity. J Neurosci 2024; 44:e0702232023. [PMID: 38050105 PMCID: PMC10860629 DOI: 10.1523/jneurosci.0702-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
5
|
Radulescu CI, Doostdar N, Zabouri N, Melgosa-Ecenarro L, Wang X, Sadeh S, Pavlidi P, Airey J, Kopanitsa M, Clopath C, Barnes SJ. Age-related dysregulation of homeostatic control in neuronal microcircuits. Nat Neurosci 2023; 26:2158-2170. [PMID: 37919424 PMCID: PMC10689243 DOI: 10.1038/s41593-023-01451-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Neuronal homeostasis prevents hyperactivity and hypoactivity. Age-related hyperactivity suggests homeostasis may be dysregulated in later life. However, plasticity mechanisms preventing age-related hyperactivity and their efficacy in later life are unclear. We identify the adult cortical plasticity response to elevated activity driven by sensory overstimulation, then test how plasticity changes with age. We use in vivo two-photon imaging of calcium-mediated cellular/synaptic activity, electrophysiology and c-Fos-activity tagging to show control of neuronal activity is dysregulated in the visual cortex in late adulthood. Specifically, in young adult cortex, mGluR5-dependent population-wide excitatory synaptic weakening and inhibitory synaptogenesis reduce cortical activity following overstimulation. In later life, these mechanisms are downregulated, so that overstimulation results in synaptic strengthening and elevated activity. We also find overstimulation disrupts cognition in older but not younger animals. We propose that specific plasticity mechanisms fail in later life dysregulating neuronal microcircuit homeostasis and that the age-related response to overstimulation can impact cognitive performance.
Collapse
Affiliation(s)
- Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Nawal Zabouri
- Department of Biomedical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Xingjian Wang
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sadra Sadeh
- Department of Biomedical Engineering, Imperial College London, South Kensington Campus, London, UK
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Pavlina Pavlidi
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joe Airey
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | - Claudia Clopath
- Department of Biomedical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
6
|
Niraula S, Yan SS, Subramanian J. Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539450. [PMID: 37205469 PMCID: PMC10187277 DOI: 10.1101/2023.05.04.539450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by the broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
7
|
Sha MFR, Koga Y, Murata Y, Taniguchi M, Yamaguchi M. Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle. Front Neurosci 2023; 17:1247375. [PMID: 37680965 PMCID: PMC10480507 DOI: 10.3389/fnins.2023.1247375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
8
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
9
|
Bang JW, Chan RW, Parra C, Murphy MC, Schuman JS, Nau AC, Chan KC. Diverging patterns of plasticity in the nucleus basalis of Meynert in early- and late-onset blindness. Brain Commun 2023; 5:fcad119. [PMID: 37101831 PMCID: PMC10123399 DOI: 10.1093/braincomms/fcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Plasticity in the brain is impacted by an individual's age at the onset of the blindness. However, what drives the varying degrees of plasticity remains largely unclear. One possible explanation attributes the mechanisms for the differing levels of plasticity to the cholinergic signals originating in the nucleus basalis of Meynert. This explanation is based on the fact that the nucleus basalis of Meynert can modulate cortical processes such as plasticity and sensory encoding through its widespread cholinergic projections. Nevertheless, there is no direct evidence indicating that the nucleus basalis of Meynert undergoes plastic changes following blindness. Therefore, using multiparametric magnetic resonance imaging, we examined if the structural and functional properties of the nucleus basalis of Meynert differ between early blind, late blind and sighted individuals. We observed that early and late blind individuals had a preserved volumetric size and cerebrovascular reactivity in the nucleus basalis of Meynert. However, we observed a reduction in the directionality of water diffusion in both early and late blind individuals compared to sighted individuals. Notably, the nucleus basalis of Meynert presented diverging patterns of functional connectivity between early and late blind individuals. This functional connectivity was enhanced at both global and local (visual, language and default-mode networks) levels in the early blind individuals, but there were little-to-no changes in the late blind individuals when compared to sighted controls. Furthermore, the age at onset of blindness predicted both global and local functional connectivity. These results suggest that upon reduced directionality of water diffusion in the nucleus basalis of Meynert, cholinergic influence may be stronger for the early blind compared to the late blind individuals. Our findings are important to unravelling why early blind individuals present stronger and more widespread cross-modal plasticity compared to late blind individuals.
Collapse
Affiliation(s)
- Ji Won Bang
- Correspondence may also be addressed to: Ji Won Bang, PhD.
| | - Russell W Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Matthew C Murphy
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY 10003, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Amy C Nau
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Korb and Associates, Boston, MA 02215, USA
| | - Kevin C Chan
- Correspondence to: Kevin C. Chan, PhD, Departments of Ophthalmology and Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University. 222 E 41st Street, Room 362, New York, NY 10017, USA.
| |
Collapse
|
10
|
Barnes SJ, Keller GB, Keck T. Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs. eLife 2022; 11:81958. [PMID: 36515269 PMCID: PMC9803349 DOI: 10.7554/elife.81958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic regulation is essential for stable neuronal function. Several synaptic mechanisms of homeostatic plasticity have been described, but the functional properties of synapses involved in homeostasis are unknown. We used longitudinal two-photon functional imaging of dendritic spine calcium signals in visual and retrosplenial cortices of awake adult mice to quantify the sensory deprivation-induced changes in the responses of functionally identified spines. We found that spines whose activity selectively correlated with intrinsic network activity underwent tumor necrosis factor alpha (TNF-α)-dependent homeostatic increases in their response amplitudes, but spines identified as responsive to sensory stimulation did not. We observed an increase in the global sensory-evoked responses following sensory deprivation, despite the fact that the identified sensory inputs did not strengthen. Instead, global sensory-evoked responses correlated with the strength of network-correlated inputs. Our results suggest that homeostatic regulation of global responses is mediated through changes to intrinsic network-correlated inputs rather than changes to identified sensory inputs thought to drive sensory processing.
Collapse
Affiliation(s)
- Samuel J Barnes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom,UK Dementia Research Institute at Imperial CollegeLondonUnited Kingdom
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Doostdar N, Airey J, Radulescu CI, Melgosa-Ecenarro L, Zabouri N, Pavlidi P, Kopanitsa M, Saito T, Saido T, Barnes SJ. Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium 2021; 95:102365. [PMID: 33610083 DOI: 10.1016/j.ceca.2021.102365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
The adult neocortex is not hard-wired but instead retains the capacity to reorganise across multiple spatial scales long into adulthood. Plastic reorganisation occurs at the level of mesoscopic sensory maps, functional neuronal assemblies and synaptic ensembles and is thought to be a critical feature of neuronal network function. Here, we describe a series of approaches that use calcium imaging to measure network reorganisation across multiple spatial scales in vivo. At the mesoscopic level, we demonstrate that sensory activity can be measured in animals undergoing longitudinal behavioural assessment involving automated touchscreen tasks. At the cellular level, we show that network dynamics can be longitudinally measured at both stable and transient functional assemblies. At the level of single synapses, we show that functional subcellular calcium imaging approaches can be used to measure synaptic ensembles of dendritic spines in vivo. Finally, we demonstrate that all three levels of imaging can be spatially related to local pathology in a preclinical rodent model of amyloidosis. We propose that multi-scale in vivo calcium imaging can be used to measure parallel plasticity processes operating across multiple spatial scales in both the healthy brain and preclinical models of disease.
Collapse
Affiliation(s)
- Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Joseph Airey
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Nawal Zabouri
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Pavlina Pavlidi
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Maksym Kopanitsa
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Centre for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom.
| |
Collapse
|
13
|
Zhang Y, Fu T, Han S, Ding Y, Wang J, Zheng J, Li J. Monocular Deprivation Affects Visual Cortex Plasticity Through cPKCγ-Modulated GluR1 Phosphorylation in Mice. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32343785 PMCID: PMC7401946 DOI: 10.1167/iovs.61.4.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To determine how visual cortex plasticity changes after monocular deprivation (MD) in mice and whether conventional protein kinase C gamma (cPKCγ) plays a role in visual cortex plasticity. Methods cPKCγ membrane translocation levels were quantified by using immunoblotting to explore the effects of MD on cPKCγ activation. Electrophysiology was used to record field excitatory postsynaptic potential (fEPSP) amplitude with the goal of observing changes in visual cortex plasticity after MD. Immunoblotting was also used to determine the phosphorylation levels of GluR1 at Ser831. Light transmission was analyzed using electroretinography to examine the effects of MD and cPKCγ on mouse retinal function. Results Membrane translocation levels of cPKCγ significantly increased in the contralateral visual cortex of MD mice compared to wild-type (WT) mice (P < 0.001). In the contralateral visual cortex, long-term potentiation (LTP) and the phosphorylation levels of GluR1 at Ser 831 were increased in cPKCγ+/+ mice after MD. Interestingly, these levels could be downregulated by cPKCγ knockout compared to cPKCγ+/++MD mice (P < 0.001). Compared to the right eyes of WT mice, the amplitudes of a-waves and b-waves declined in deprived right eyes of mice after MD (P < 0.001). There were no significant differences when comparing cPKCγ+/+ and cPKCγ−/− mice with MD. Conclusions cPKCγ participates in the plasticity of the visual cortex after MD, which is characterized by increased LTP in the contralateral visual cortex, which may be a result of cPKCγ-mediated phosphorylation of GluR1 at Ser 831.
Collapse
|
14
|
Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity‐related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol 2020; 528:1349-1366. [DOI: 10.1002/cne.24832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hector Carceller
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
| | - Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
- CIBERSAM: Spanish National Network for Research in Mental Health Madrid Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA Valencia Spain
| |
Collapse
|
15
|
Perineuronal Nets Regulate the Inhibitory Perisomatic Input onto Parvalbumin Interneurons and γ Activity in the Prefrontal Cortex. J Neurosci 2020; 40:5008-5018. [PMID: 32457072 DOI: 10.1523/jneurosci.0291-20.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin-expressing (PV+) interneurons play a key role in the maturation and synchronization of cortical circuitry and alterations in these inhibitory neurons, especially in the medial prefrontal cortex (mPFC), have been found in different psychiatric disorders. The formation of perineuronal nets (PNNs) around many of these interneurons at the end of the critical periods reduces their plasticity and sets their connectivity. Consequently, the presence of PNNs must have an important impact on the synaptic input and the physiology of PV+ cells. In the present study, we have found that in adult male mice, prefrontocortical PV+ cells surrounded by PNNs show higher density of perisomatic excitatory and inhibitory puncta, longer axonal initial segments (AISs), and higher PV expression when compared with PV+ cells lacking PNNs. In order to better understand the impact of PNNs on the connectivity and physiology of PV+ interneurons in the mPFC, we have digested enzymatically these structures and have found a decrease in the density of inhibitory puncta on their perisomatic region but not on the PV+ perisomatic puncta on pyramidal neurons. Moreover, extracellular recordings show that the digestion of PNNs induces a decrease in γ activity, an oscillation dependent on PV+ cells, in the mPFC of anesthetized mice. Our results suggest that the presence of PNNs enwrapping PV+ cells regulates their inhibitory input and has a potent influence on their activity. These results may be relevant for psychiatric research, given the alterations in PNNs, PV+ interneurons and their physiology described in different mental disorders.SIGNIFICANCE STATEMENT Parvalbumin-expressing (PV+) interneurons are surrounded by specializations of the extracellular matrix, the perineuronal nets (PNNs). PNNs regulate the development and plasticity of PV+ cells and, consequently, their presence must influence their synaptic input and physiology. We have found, in the adult prefrontal cortex (PFC), substantial differences in the structure and connectivity of PV+ interneurons depending on the presence of PNNs. The depletion of PNNs from the PFC has also a potent effect on the connectivity of PV+ cells and on neural oscillations that depend on these cells. These findings are relevant to understand the role of PNNs in the adult brain and in certain psychiatric disorders in which alterations in PNNs and PV+ interneurons have been described.
Collapse
|
16
|
Activity Dependent and Independent Determinants of Synaptic Size Diversity. J Neurosci 2020; 40:2828-2848. [PMID: 32127494 DOI: 10.1523/jneurosci.2181-19.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
The extraordinary diversity of excitatory synapse sizes is commonly attributed to activity-dependent processes that drive synaptic growth and diminution. Recent studies also point to activity-independent size fluctuations, possibly driven by innate synaptic molecule dynamics, as important generators of size diversity. To examine the contributions of activity-dependent and independent processes to excitatory synapse size diversity, we studied glutamatergic synapse size dynamics and diversification in cultured rat cortical neurons (both sexes), silenced from plating. We found that in networks with no history of activity whatsoever, synaptic size diversity was no less extensive than that observed in spontaneously active networks. Synapses in silenced networks were larger, size distributions were broader, yet these were rightward-skewed and similar in shape when scaled by mean synaptic size. Silencing reduced the magnitude of size fluctuations and weakened constraints on size distributions, yet these were sufficient to explain synaptic size diversity in silenced networks. Model-based exploration followed by experimental testing indicated that silencing-associated changes in innate molecular dynamics and fluctuation characteristics might negatively impact synaptic persistence, resulting in reduced synaptic numbers. This, in turn, would increase synaptic molecule availability, promote synaptic enlargement, and ultimately alter fluctuation characteristics. These findings suggest that activity-independent size fluctuations are sufficient to fully diversify glutamatergic synaptic sizes, with activity-dependent processes primarily setting the scale rather than the shape of size distributions. Moreover, they point to reciprocal relationships between synaptic size fluctuations, size distributions, and synaptic numbers mediated by the innate dynamics of synaptic molecules as they move in, out, and between synapses.SIGNIFICANCE STATEMENT Sizes of glutamatergic synapses vary tremendously, even when formed on the same neuron. This diversity is commonly thought to reflect the outcome of activity-dependent forms of synaptic plasticity, yet activity-independent processes might also play some part. Here we show that in neurons with no history of activity whatsoever, synaptic sizes are no less diverse. We show that this diversity is the product of activity-independent size fluctuations, which are sufficient to generate a full repertoire of synaptic sizes at correct proportions. By combining modeling and experimentation we expose reciprocal relationships between size fluctuations, synaptic sizes and synaptic counts, and show how these phenomena might be connected through the dynamics of synaptic molecules as they move in, out, and between synapses.
Collapse
|
17
|
Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nat Commun 2019; 10:5684. [PMID: 31831751 PMCID: PMC6908602 DOI: 10.1038/s41467-019-13607-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
We experience the world through multiple senses simultaneously. To better understand mechanisms of multisensory processing we ask whether inputs from two senses (auditory and visual) can interact and drive plasticity in neural-circuits of the primary visual cortex (V1). Using genetically-encoded voltage and calcium indicators, we find coincident audio-visual experience modifies both the supra and subthreshold response properties of neurons in L2/3 of mouse V1. Specifically, we find that after audio-visual pairing, a subset of multimodal neurons develops enhanced auditory responses to the paired auditory stimulus. This cross-modal plasticity persists over days and is reflected in the strengthening of small functional networks of L2/3 neurons. We find V1 processes coincident auditory and visual events by strengthening functional associations between feature specific assemblies of multimodal neurons during bouts of sensory driven co-activity, leaving a trace of multisensory experience in the cortical network.
Collapse
|
18
|
Yang Y, Lu J, Zuo Y. Changes of Synaptic Structures Associated with Learning, Memory and Diseases. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
19
|
Real R, Peter M, Trabalza A, Khan S, Smith MA, Dopp J, Barnes SJ, Momoh A, Strano A, Volpi E, Knott G, Livesey FJ, De Paola V. In vivo modeling of human neuron dynamics and Down syndrome. Science 2018; 362:science.aau1810. [PMID: 30309905 DOI: 10.1126/science.aau1810] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Harnessing the potential of human stem cells for modeling the physiology and diseases of cortical circuitry requires monitoring cellular dynamics in vivo. We show that human induced pluripotent stem cell (iPSC)-derived cortical neurons transplanted into the adult mouse cortex consistently organized into large (up to ~100 mm3) vascularized neuron-glia territories with complex cytoarchitecture. Longitudinal imaging of >4000 grafted developing human neurons revealed that neuronal arbors refined via branch-specific retraction; human synaptic networks substantially restructured over 4 months, with balanced rates of synapse formation and elimination; and oscillatory population activity mirrored the patterns of fetal neural networks. Lastly, we found increased synaptic stability and reduced oscillations in transplants from two individuals with Down syndrome, demonstrating the potential of in vivo imaging in human tissue grafts for patient-specific modeling of cortical development, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Raquel Real
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Manuel Peter
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Antonio Trabalza
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Shabana Khan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Mark A Smith
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Joana Dopp
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Ayiba Momoh
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Alessio Strano
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Emanuela Volpi
- University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
| | | | - Frederick J Livesey
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK. .,UCL Great Ormond Street Institute of Child Health, 30 Guilford St., London WC1N 1EH, UK
| | - Vincenzo De Paola
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK. .,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|