1
|
Mauthner SE, Tracey WD. Mechanical Nociception Assay in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.prot108125. [PMID: 39095079 PMCID: PMC11787401 DOI: 10.1101/pdb.prot108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nervous system of animals can sense and respond to noxious stimuli, which include noxious thermal, chemical, or mechanical stimuli, through a process called nociception. Here, we describe a simple behavioral assay to measure mechanically induced nociceptive responses in Drosophila larvae. This assay tests larval mechanosensitivity to noxious force with calibrated von Frey filaments. First, we explain how to construct and calibrate the customizable von Frey filaments that can be used to deliver reproducible stimuli of a defined force or pressure. Next, we describe how to perform the mechanical nociception assay on third-instar larvae. Through comparison of the responses of genotypes of interest, this assay can be useful for investigation of molecular, cellular, and circuit mechanisms of mechanical nociception. At the molecular level, prior studies have identified the importance of sensory ion channels such as Pickpocket/Balboa, Piezo, dTRPA1, and Painless. At the cellular level, the class IV multidendritic arborizing (md-da) neurons are the main mechanical nociceptor neurons of the peripheral system, but class III and class II md-da have been found to also play a role. At the circuit level, studies have shown that mechanical nociception relies on interneurons of the abdominal ganglia that integrate inputs from these various md-da neuron classes.
Collapse
Affiliation(s)
- Stephanie E Mauthner
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
2
|
Borjon LJ, Mauthner SE, Tracey WD. Nociception in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.top108172. [PMID: 39095078 PMCID: PMC11787404 DOI: 10.1101/pdb.top108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nociception is the sensory modality by which animals sense stimuli associated with injury or potential tissue damage. When Drosophila larvae encounter a noxious thermal, chemical, or mechanical stimulus, they perform a stereotyped rolling behavior. These noxious stimuli are detected by polymodal nociceptor neurons that tile the larval epidermis. Although several types of sensory neurons feed into the nociceptive behavioral output, the highly branched class IV multidendritic arborization neurons are the most critical. At the molecular level, Drosophila nociception shares many conserved features with vertebrate nociception, making it a useful organism for medically relevant research in this area. Here, we review three larval assays for nociceptive behavior using mechanical stimuli, optogenetic activation, and the naturalistic stimuli of parasitoid wasp attacks. Together, the assays described have been successfully used by many laboratories in studies of the molecular, cellular, and circuit mechanisms of nociception. In addition, the simple nature of the assays we describe can be useful in teaching laboratories for undergraduate students.
Collapse
Affiliation(s)
- Lydia J Borjon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - Stephanie E Mauthner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| |
Collapse
|
3
|
Kohlmeier P, Billeter JC. Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects. Mol Ecol 2023; 32:45-60. [PMID: 36239485 PMCID: PMC10092625 DOI: 10.1111/mec.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA- and protein-sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Dyson A, Ryan M, Garg S, Evans DG, Baines RA. Loss of NF1 in Drosophila Larvae Causes Tactile Hypersensitivity and Impaired Synaptic Transmission at the Neuromuscular Junction. J Neurosci 2022; 42:9450-9472. [PMID: 36344265 PMCID: PMC9794380 DOI: 10.1523/jneurosci.0562-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition in which the mechanisms underlying its core symptomatology are largely unknown. Studying animal models of monogenic syndromes associated with ASD, such as neurofibromatosis type 1 (NF1), can offer insights into its etiology. Here, we show that loss of function of the Drosophila NF1 ortholog results in tactile hypersensitivity following brief mechanical stimulation in the larva (mixed sexes), paralleling the sensory abnormalities observed in individuals with ASD. Mutant larvae also exhibit synaptic transmission deficits at the glutamatergic neuromuscular junction (NMJ), with increased spontaneous but reduced evoked release. While the latter is homeostatically compensated for by a postsynaptic increase in input resistance, the former is consistent with neuronal hyperexcitability. Indeed, diminished expression of NF1 specifically within central cholinergic neurons induces both excessive neuronal firing and tactile hypersensitivity, suggesting the two may be linked. Furthermore, both impaired synaptic transmission and behavioral deficits are fully rescued via knock-down of Ras proteins. These findings validate NF1 -/- Drosophila as a tractable model of ASD with the potential to elucidate important pathophysiological mechanisms.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) affects 1-2% of the overall population and can considerably impact an individual's quality of life. However, there are currently no treatments available for its core symptoms, largely because of a poor understanding of the underlying mechanisms involved. Examining how loss of function of the ASD-associated NF1 gene affects behavior and physiology in Drosophila may shed light on this. In this study, we identify a novel, ASD-relevant behavioral phenotype in NF1 -/- larvae, namely an enhanced response to mechanical stimulation, which is associated with Ras-dependent synaptic transmission deficits indicative of neuronal hyperexcitability. Such insights support the use of Drosophila neurofibromatosis type 1 (NF1) models in ASD research and may provide outputs for genetic or pharmacological screens in future studies.
Collapse
Affiliation(s)
- Alex Dyson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Megan Ryan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, United Kingdom
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
5
|
Gong J, Chen J, Gu P, Shang Y, Ruppell KT, Yang Y, Wang F, Wen Q, Xiang Y. Shear stress activates nociceptors to drive Drosophila mechanical nociception. Neuron 2022; 110:3727-3742.e8. [PMID: 36087585 DOI: 10.1016/j.neuron.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Mechanical nociception is essential for animal survival. However, the forces involved in nociceptor activation and the underlying mechanotransduction mechanisms remain elusive. Here, we address these problems by investigating nocifensive behavior in Drosophila larvae. We show that strong poking stimulates nociceptors with a mixture of forces including shear stress and stretch. Unexpectedly, nociceptors are selectively activated by shear stress, but not stretch. Both the shear stress responses of nociceptors and nocifensive behavior require transient receptor potential A1 (TrpA1), which is specifically expressed in nociceptors. We further demonstrate that expression of mammalian or Drosophila TrpA1 in heterologous cells confers responses to shear stress but not stretch. Finally, shear stress activates TrpA1 in a membrane-delimited manner, through modulation of membrane fluidity. Together, our study reveals TrpA1 as an evolutionarily conserved mechanosensitive channel specifically activated by shear stress and suggests a critical role of shear stress in activating nociceptors to drive mechanical nociception.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ye Shang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kendra Takle Ruppell
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ying Yang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA.
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Loss of Pseudouridine Synthases in the RluA Family Causes Hypersensitive Nociception in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:4425-4438. [PMID: 33028630 PMCID: PMC7718762 DOI: 10.1534/g3.120.401767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nociceptive neurons of Drosophila melanogaster larvae are characterized by highly branched dendritic processes whose proper morphogenesis relies on a large number of RNA-binding proteins. Post-transcriptional regulation of RNA in these dendrites has been found to play an important role in their function. Here, we investigate the neuronal functions of two putative RNA modification genes, RluA-1 and RluA-2, which are predicted to encode pseudouridine synthases. RluA-1 is specifically expressed in larval sensory neurons while RluA-2 expression is ubiquitous. Nociceptor-specific RNAi knockdown of RluA-1 caused hypersensitive nociception phenotypes, which were recapitulated with genetic null alleles. These were rescued with genomic duplication and nociceptor-specific expression of UAS- RluA-1 -cDNA As with RluA-1, RluA-2 loss of function mutants also displayed hyperalgesia. Interestingly, nociceptor neuron dendrites showed a hyperbranched morphology in the RluA-1 mutants. The latter may be a cause or a consequence of heightened sensitivity in mutant nociception behaviors.
Collapse
|
7
|
Amin H, Apostolopoulou AA, Suárez-Grimalt R, Vrontou E, Lin AC. Localized inhibition in the Drosophila mushroom body. eLife 2020; 9:56954. [PMID: 32955437 PMCID: PMC7541083 DOI: 10.7554/elife.56954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells’ dendrites and axons, and that both activity in APL and APL’s inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Suárez-Grimalt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Drosophila melanogaster foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit. Proc Natl Acad Sci U S A 2019; 117:23286-23291. [PMID: 31213548 DOI: 10.1073/pnas.1820840116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks, Drosophila melanogaster larvae generate a curling and rolling response. Rover and sitter allelic variants of the Drosophila foraging (for) gene differ in parasitoid wasp susceptibility, suggesting a link between for and nociception. By optogenetically activating cells associated with each of for's promoters (pr1-pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. The for null mutants display impaired responses to thermal nociception, which are rescued by restoring for expression in pr1 cells. Conversely, knockdown of for in pr1 cells phenocopies the for null mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role of for in larval nociceptive behavior. This function is specific to for pr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.
Collapse
|
9
|
Kanaoka Y, Skibbe H, Hayashi Y, Uemura T, Hattori Y. DeTerm: Software for automatic detection of neuronal dendritic branch terminals via an artificial neural network. Genes Cells 2019; 24:464-472. [PMID: 31095815 DOI: 10.1111/gtc.12700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Dendrites of neurons receive and process synaptic or sensory inputs. The Drosophila class IV dendritic arborization (da) neuron is an established model system to explore molecular mechanisms of dendrite morphogenesis. The total number of dendritic branch terminals is one of the frequently employed parameters to characterize dendritic arborization complexity of class IV neurons. This parameter gives a useful phenotypic readout of arborization during neurogenesis, and it is typically determined by laborious manual analyses of numerous images. Ideally, an automated analysis would greatly reduce the workload; however, it is challenging to automatically discriminate dendritic branch terminals from signals of surrounding tissues in whole-mount live larvae. Here, we describe our newly developed software, called DeTerm, which automatically recognizes and quantifies dendrite branch terminals via an artificial neural network. Once we input an image file of a neuronal dendritic arbor and its region of interest information, DeTerm is capable of labeling terminals of larval class IV neurons with high precision, and it also provides positional data of individual terminals. We further show that DeTerm is applicable to other types of neurons, including mouse cerebellar Purkinje cells. DeTerm is freely available on the web and was successfully tested on Mac, Windows and Linux.
Collapse
Affiliation(s)
| | - Henrik Skibbe
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Yusaku Hayashi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Herman JA, Willits AB, Bellemer A. Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae. PeerJ 2018; 6:e5632. [PMID: 30258723 PMCID: PMC6151255 DOI: 10.7717/peerj.5632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
Abstract
Drosophila melanogaster larvae detect noxious thermal and mechanical stimuli in their environment using polymodal nociceptor neurons whose dendrites tile the larval body wall. Activation of these nociceptors by potentially tissue-damaging stimuli elicits a stereotyped escape locomotion response. The cellular and molecular mechanisms that regulate nociceptor function are increasingly well understood, but gaps remain in our knowledge of the broad mechanisms that control nociceptor sensitivity. In this study, we use cell-specific knockdown and overexpression to show that nociceptor sensitivity to noxious thermal and mechanical stimuli is correlated with levels of Gαq and phospholipase Cβ signaling. Genetic manipulation of these signaling mechanisms does not result in changes in nociceptor morphology, suggesting that changes in nociceptor function do not arise from changes in nociceptor development, but instead from changes in nociceptor activity. These results demonstrate roles for Gαq and phospholipase Cβ signaling in facilitating the basal sensitivity of the larval nociceptors to noxious thermal and mechanical stimuli and suggest future studies to investigate how these signaling mechanisms may participate in neuromodulation of sensory function.
Collapse
Affiliation(s)
- Joshua A Herman
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Adam B Willits
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| |
Collapse
|