1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Xu H, Fan Z. The role and mechanism of Schwann cells in the repair of peripheral nerve injury. Cell Tissue Res 2025; 400:81-95. [PMID: 39954051 DOI: 10.1007/s00441-025-03957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Limb injuries such as severe strains, deep cuts, gunshot wounds, and ischemia can cause peripheral nerve damage. This can result in a range of clinical symptoms including sensory deficits, limb paralysis and atrophy, neuralgia, and sweating abnormalities in the innervated areas affected by the damaged nerves. These symptoms can have a significant impact on patients' daily lives and work. Despite existing clinical treatments, some patients cannot achieve satisfactory therapeutic effects and continue to experience persistent paralysis and pain. Schwann cells are responsible for repairing and regenerating damaged nerves in the peripheral nervous system. They play a crucial role in the healing of nerve injuries and are essential for the restoration of proper nerve function. An increasing number of studies have focused on the various regulatory mechanisms that specifically affect the repair of damage by Schwann cells. This article aims to provide information on the different types of peripheral nerve injuries and their available treatments. We also discuss the various molecular mechanisms that regulate Schwann cell function during peripheral nerve repair and how they can be used to promote nerve repair and regeneration. Furthermore, we explore the potential therapeutic applications of precision regulation of Schwann cells for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Huiyue Xu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
4
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
6
|
Duong P, Ramesh R, Schneider A, Won S, Cooper AJ, Svaren J. Modulation of Schwann cell homeostasis by the BAP1 deubiquitinase. Glia 2023; 71:1466-1480. [PMID: 36790040 PMCID: PMC10073320 DOI: 10.1002/glia.24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Schwann cell programming during myelination involves transcriptional networks that activate gene expression but also repress genes that are active in neural crest/embryonic differentiation of Schwann cells. We previously found that a Schwann cell-specific deletion of the EED subunit of the Polycomb Repressive Complex (PRC2) led to inappropriate activation of many such genes. Moreover, some of these genes become re-activated in the pro-regenerative response of Schwann cells to nerve injury, and we found premature activation of the nerve injury program in a Schwann cell-specific knockout of Eed. Polycomb-associated histone modifications include H3K27 trimethylation formed by PRC2 and H2AK119 monoubiquitination (H2AK119ub1), deposited by Polycomb repressive complex 1 (PRC1). We recently found dynamic regulation of H2AK119ub1 in Schwann cell genes after injury. Therefore, we hypothesized that H2AK119 deubiquitination modulates the dynamic polycomb repression of genes involved in Schwann cell maturation. To determine the role of H2AK119 deubiquitination, we generated a Schwann cell-specific knockout of the H2AK119 deubiquitinase Bap1 (BRCA1-associated protein). We found that loss of Bap1 causes tomacula formation, decreased axon diameters and eventual loss of myelinated axons. The gene expression changes are accompanied by redistribution of H2AK119ub1 and H3K27me3 modifications to extragenic sites throughout the genome. BAP1 interacts with OGT in the PR-DUB complex, and our data suggest that the PR-DUB complex plays a multifunctional role in repression of the injury program. Overall, our results indicate Bap1 is required to restrict the spread of polycomb-associated histone modifications in Schwann cells and to promote myelin homeostasis in peripheral nerve.
Collapse
Affiliation(s)
- Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department Of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Gong X, Gui Z, Ye X, Li X. Jatrorrhizine ameliorates Schwann cell myelination via inhibiting HDAC3 ability to recruit Atxn2l for regulating the NRG1-ErbB2-PI3K-AKT pathway in diabetic peripheral neuropathy mice. Phytother Res 2023; 37:645-657. [PMID: 36218239 DOI: 10.1002/ptr.7641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic complication associated with nerve dysfunction and uncontrolled hyperglycemia. Unfortunately, due to its complicated etiology, there has been no successful therapy for DPN. Our research recently revealed that jatrorrhizine (JAT), one of the active constituents of Rhizoma Coptidis, remarkably ameliorated DPN. This work highlighted the potential mechanism through which JAT relieves DPN using db/db mice. The results indicated that JAT treatment significantly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity. Histopathological analysis revealed that JAT significantly increased the number of sciatic nerve fibers and axons, myelin thickness, and axonal diameters. Additionally, JAT markedly elevated the expression of myelination-associated proteins (MBP, MPZ, and Pmp22). The screening of histone deacetylases (HDAC) determined that histone deacetylase 3 (HDAC3) is an excellent target for JAT-induced myelination enhancement. Liquid chromatography-mass spectrometry-(MS)/MS and coimmunoprecipitation analyses further confirmed that HDAC3 antagonizes the NRG1-ErbB2-PI3K-AKT signaling axis by interacting with Atxn2l to augment SCs myelination. Thus, JAT ameliorates SCs myelination in DPN mice via inhibiting the recruitment of Atxn2l by HDAC3 to regulate the NRG1-ErbB2-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiaobao Gong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Zhenwei Gui
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
9
|
Chatzitheodoridou D, D'Ario M, Jones I, Piñeros L, Serbanescu D, O'Donnell F, Cadart C, Swaffer MP. Meeting report - Cell size and growth: from single cells to the tree of life. J Cell Sci 2022; 135:jcs260634. [PMID: 36259425 DOI: 10.1242/jcs.260634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
In April 2022, The Company of Biologists hosted their first post-pandemic in-person Workshop at Buxted Park Country House in the Sussex countryside. The Workshop, entitled 'Cell size and growth: from single cells to the tree of life', gathered a small group of early-career and senior researchers with expertise in cell size spanning a broad range of organisms, including bacteria, yeast, animal cells, embryos and plants, and working in fields from cell biology to ecology and evolutionary biology. The programme made ample room for fruitful discussions and provided a much-needed opportunity to discuss the most recent findings relating to the regulation of cell size and growth, identify the emerging challenges for the field, and build a community after the pandemic.
Collapse
Affiliation(s)
| | - Marco D'Ario
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ian Jones
- Department of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, SW3 6JB, UK
| | - Liliana Piñeros
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1bis gebouw 402-20, Herestraat 49, B-3000 Leuven, Belgium
| | - Diana Serbanescu
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Frank O'Donnell
- The Company of Biologists, 94 Station Road, Histon, Cambridge, CB24 9LF, UK
| | - Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
10
|
Prior R, Verschoren S, Vints K, Jaspers T, Rossaert E, Klingl YE, Silva A, Hersmus N, Van Damme P, Van Den Bosch L. HDAC3 Inhibition Stimulates Myelination in a CMT1A Mouse Model. Mol Neurobiol 2022; 59:3414-3430. [PMID: 35320455 PMCID: PMC9148289 DOI: 10.1007/s12035-022-02782-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy, with currently no effective treatment or cure. CMT1A is caused by a duplication of the PMP22 gene, which leads to Schwann cell differentiation defects and dysmyelination of the peripheral nerves. The epigenetic regulator histone deacetylase 3 (HDAC3) has been shown to negatively regulate myelination as well as its associated signaling pathways, PI3K-AKT and MAPK-ERK. We showed that these signaling pathways are indeed downregulated in the C3-PMP22 mouse model, similar to what has been shown in the CMT1A rat model. We confirmed that early postnatal defects are present in the peripheral nerves of the C3-PMP22 mouse model, which led to a progressive reduction in axon caliber size and myelination. The aim of this study was to investigate whether pharmacological HDAC3 inhibition could be a valuable therapeutic approach for this CMT1A mouse model. We demonstrated that early treatment of CMT1A mice with the selective HDAC3 inhibitor RGFP966 increased myelination and myelin g-ratios, which was associated with improved electrophysiological recordings. However, a high dose of RGFP966 caused a decline in rotarod performance and a decline in overall grip strength. Additionally, macrophage presence in peripheral nerves was increased in RGFP966 treated CMT1A mice. We conclude that HDAC3 does not only play a role in regulating myelination but is also important in the neuroimmune modulation. Overall, our results indicate that correct dosing of HDAC3 inhibitors is of crucial importance if translated to a clinical setting for demyelinating forms of CMT or other neurological disorders.
Collapse
Affiliation(s)
- Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium.
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium.
| | - Stijn Verschoren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Katlijn Vints
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Electron Microscopy Platform & VIB BioImaging Core, Herestraat 49, B-3000, Leuven, Belgium
| | - Tom Jaspers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Elisabeth Rossaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Alessio Silva
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium
- Neurology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, B-3000, Leuven, Belgium.
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Campus Gasthuisberg O&N5, Herestraat 49, box 602, B-3000, Leuven, Belgium.
| |
Collapse
|
11
|
Shen M, Chen Z, Ming M, Cheng Z, Sun J, Liang J, Shang T, Zhang Q, Zhou S, Ji Y, Ding F. The acetylome of adult mouse sciatic nerve. J Neurochem 2022; 162:262-275. [PMID: 35585794 DOI: 10.1111/jnc.15648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) involved in multiple physiological functions. Recent studies have demonstrated the involvement of protein acetylation in modulating the biology of Schwann cells (SCs) and regeneration of the peripheral nervous system (PNS). However, the mechanisms underlying these processes remain partially understood. Here, we characterized the acetylome of the mouse sciatic nerve (SN) and investigated the cellular distribution of acetylated proteins. We identified 483 acetylated proteins containing 1,442 acetylation modification sites in the SN of adult C57BL/6 mice. Bioinformatics suggested that these acetylated SN proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and cytoskeleton, and highlighted the significant differences between the mouse SN and brain acetylome. Manual annotation further indicated that most acetylated proteins (> 45%) were associated with mitochondria, energy metabolism, and cytoskeleton and cell adhesion. We verified three newly discovered acetylation-modified proteins, including neurofilament light polypeptide (NEFL), neurofilament medium/high polypeptide (NFM/H), and periaxin (PRX). Immunofluorescence illustrated that the acetylated proteins, including acetylated alpha-tubulin, were mainly co-localized with S100-positive SCs. Herein, we provided a comprehensive acetylome for the mouse SN and demonstrated that acetylated proteins in the SN were predominantly located in SCs. These results will extend our understanding and promote further study of the role and mechanism of protein acetylation in SC development and PNS regeneration.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Zixin Chen
- Department of Immunology, College of Life science and Technology, Jinan University, Guangzhou, China
| | - Mengru Ming
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jingyun Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.,Department of Immunology, College of Life science and Technology, Jinan University, Guangzhou, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
12
|
Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022; 16:865266. [PMID: 35602558 PMCID: PMC9120533 DOI: 10.3389/fncel.2022.865266] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with the central nervous system, the adult peripheral nervous system possesses a remarkable regenerative capacity, which is due to the strong plasticity of Schwann cells (SCs) in peripheral nerves. After peripheral nervous injury, SCs de-differentiate and transform into repair phenotypes, and play a critical role in axonal regeneration, myelin formation, and clearance of axonal and myelin debris. In view of the limited self-repair capability of SCs for long segment defects of peripheral nerve defects, it is of great clinical value to supplement SCs in necrotic areas through gene modification or stem cell transplantation or to construct tissue-engineered nerve combined with bioactive scaffolds to repair such tissue defects. Based on the developmental lineage of SCs and the gene regulation network after peripheral nerve injury (PNI), this review summarizes the possibility of using SCs constructed by the latest gene modification technology to repair PNI. The therapeutic effects of tissue-engineered nerve constructed by materials combined with Schwann cells resembles autologous transplantation, which is the gold standard for PNI repair. Therefore, this review generalizes the research progress of biomaterials combined with Schwann cells for PNI repair. Based on the difficulty of donor sources, this review also discusses the potential of “unlimited” provision of pluripotent stem cells capable of directing differentiation or transforming existing somatic cells into induced SCs. The summary of these concepts and therapeutic strategies makes it possible for SCs to be used more effectively in the repair of PNI.
Collapse
Affiliation(s)
- Qisong Su
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiaming He
- School of Basic Medical Science, Shandong University, Jinan, China
| | - Gang Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Donglin Zhuang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Haoyun Hu
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Nanbo Liu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhetao Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- *Correspondence: Ping Zhu,
| | - Ge Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- Ge Li,
| |
Collapse
|
13
|
Xie Y, Li Z, Xu H, Ma J, Li T, Shi C, Jin J. Downregulation of Sp1 Inhibits the Expression of HDAC1/SOX10 to Alleviate Neuropathic Pain-like Behaviors after Spinal Nerve Ligation in Mice. ACS Chem Neurosci 2022; 13:1446-1455. [PMID: 35420781 DOI: 10.1021/acschemneuro.2c00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Specific protein 1 (Sp1) is a member of the Sp/Kruppel-like factor family, which regulates cellular processes of neurons in the nervous system. This study was performed to examine the regulatory role and the underlying mechanism of transcription factor Sp1 in neuropathic pain (NP)-like behaviors after spinal nerve ligation (SNL). Sp1 and histone deacetylase 1(HDAC1) expressions were determined in the C57BL6 mouse model with NP-like behaviors after SNL, which demonstrated that Sp1 and HDAC1 elevation occurred in neurons in the spinal dorsal horn of SNL mice. The chromatin immunoprecipitation assay verified that Sp1 was bound to the HDAC1 promoter region and HDAC1 to the SRY-box-containing gene 10 (SOX10) promoter region in the spinal dorsal horn. Immunofluorescence was performed to determine Sp1, HDAC1, and SOX10 in the spinal dorsal horn neurons as well as the neuronal marker (NeuN), microglial marker (Iba-1), and astrocyte marker (GFAP). The nociceptive test was performed to characterize the hindlimb paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of mice 0-10 days after model establishment. Loss- and gain-of-function assays revealed that Sp1 promoted HDAC1 expression, and HDAC1 in turn promoted SOX10 expression. HDAC1 elevation reversed the effects of Sp1 silencing, and the increased PWT and PWL of SNL mice were negated after SOX10 overexpression. Meanwhile, SOX10 also restored the results by Sp1 knockdown. Collectively, downregulating Sp1 alleviates NP-like behaviors after SNL via the HDAC1/SOX10 axis.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Zhen Li
- Department of Otorhinolaryngology, Yantaishan Hospital, Yantai 264000, P. R. China
| | - Hongyu Xu
- Department of Anesthesiology, Central Hospital of Zibo City, Zibo 255000, P. R. China
| | - Jiahai Ma
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Tao Li
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Cunxian Shi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Jin Jin
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| |
Collapse
|
14
|
Gomez-Sanchez JA, Patel N, Martirena F, Fazal SV, Mutschler C, Cabedo H. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int J Mol Sci 2022; 23:ijms23062996. [PMID: 35328416 PMCID: PMC8951080 DOI: 10.3390/ijms23062996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The peripheral nervous system (PNS) has a remarkable regenerative capacity in comparison to the central nervous system (CNS), a phenomenon that is impaired during ageing. The ability of PNS axons to regenerate after injury is due to Schwann cells (SC) being reprogrammed into a repair phenotype called Repair Schwann cells. These repair SCs are crucial for supporting axonal growth after injury, myelin degradation in a process known as myelinophagy, neurotropic factor secretion, and axonal growth guidance through the formation of Büngner bands. After regeneration, repair SCs can remyelinate newly regenerated axons and support nonmyelinated axons. Increasing evidence points to an epigenetic component in the regulation of repair SC gene expression changes, which is necessary for SC reprogramming and regeneration. One of these epigenetic regulations is histone acetylation by histone acetyl transferases (HATs) or histone deacetylation by histone deacetylases (HDACs). In this review, we have focused particularly on three HDAC classes (I, II, and IV) that are Zn2+-dependent deacetylases. These HDACs are important in repair SC biology and remyelination after PNS injury. Another key aspect explored in this review is HDAC genetic compensation in SCs and novel HDAC inhibitors that are being studied to improve nerve regeneration.
Collapse
Affiliation(s)
- Jose A. Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-919-594
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernanda Martirena
- Department of Hematology, General University Hospital of Elda, 03600 Elda, Spain;
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
- Wellcome—MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
15
|
Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, Lu FI, Liu YH, Wu CC. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation 2021; 18:238. [PMID: 34656124 PMCID: PMC8520633 DOI: 10.1186/s12974-021-02273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. Methods We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. Results Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. Conclusions Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02273-1.
Collapse
Affiliation(s)
- Anjali Yadav
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuan-Yu Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
17
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
18
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
19
|
EEF1A1 deacetylation enables transcriptional activation of remyelination. Nat Commun 2020; 11:3420. [PMID: 32647127 PMCID: PMC7347577 DOI: 10.1038/s41467-020-17243-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination. Acetylated eEF1A1 (Ac-eEF1A1) translocates into the nucleus of myelinating cells where it binds to Sox10, a key transcription factor for PNS and CNS myelination and remyelination, to drag Sox10 out of the nucleus. We show that the lysine acetyltransferase Tip60 acetylates eEF1A1, whereas the histone deacetylase HDAC2 deacetylates eEF1A1. Promoting eEF1A1 deacetylation maintains the activation of Sox10 target genes and increases PNS and CNS remyelination efficiency. Taken together, these data identify a major mechanism of Sox10 regulation, which appears promising for future translational studies on PNS and CNS remyelination. The molecular mechanisms regulating remyelination are unclear. Here, the authors show that promoting deacetylation of eEF1A1 prevents the translocation of Sox10 outside the nucleus, contributing to maintaining the expression of Sox10 target genes and increasing remyelination efficiency.
Collapse
|
20
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
21
|
Lin HM, Lin LF, Sun MY, Liu J, Wu Q. Topical Delivery of Four Neuroprotective Ingredients by Ethosome-Gel: Synergistic Combination for Treatment of Oxaliplatin-Induced Peripheral Neuropathy. Int J Nanomedicine 2020; 15:3251-3266. [PMID: 32440122 PMCID: PMC7213895 DOI: 10.2147/ijn.s233747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral neuropathy is a common and painful side effect that occurs in patients with cancer induced by Oxaliplatin (OXL). The neurotoxicity correlates with the damage of dorsal root ganglion (DRG) neurons and Schwann cells (SCs). Hydroxysafflor yellow A (HSYA), icariin, epimedin B and 3, 4-dihydroxybenzoic acid (DA) are the main neuroprotective ingredients identified in Wen-Luo-Tong (WLT), a traditional Chinese medicinal topical compound. The purpose of this study was to prepare and evaluate the efficacy of an ethosomes gel formulation loaded with a combination of HSYA, icariin, epimedin B and DA. However, the low LogP value, poor solubility and macromolecule are several challenges for topical delivery of these drugs. Methods Ethosomes were prepared by the single-step injection technique. Particle size, entrapment efficiency and in vitro drug deposition studies were determined to select the optimum ethosomes. The optimized ethosomes were further incorporated into carbopol to obtain a gel. The rheological properties, morphology, in vitro drug release, in vitro gel application and skin distribution of the ethosomes gels were studied. A rat model of oxaliplatin-induced neuropathy was established to assess the therapeutic efficacy of the ethosomes gel. Results Seventy percent (v/v) ethanol, cinnamaldehyde and Phospholipon 90G were employed to develop ethosomes a carrier system. This system had a high entrapment efficiency, carried large amounts of HSYA, epimedin B, DA and icarrin, and penetrated deep into the epidermis and dermis. The optimized ethosomes had the maximum deposition of icariin, HSYA, epimedin B and relative higher amount of DA in epidermis (2.00±0.13 µg/cm2, 5.72±0.75 µg/cm2, 1.97±0.27 µg/cm2 and 9.25±1.21 µg/cm2, respectively). 0.5% carbopol 980 was selected to develop the ethosomes gel with desirable viscoelasticity and spreadability, which was suitable for topical application. The mechanical allodynia and hyperalgesia induced by OXL in rats were significantly reduced after the new ethosomes gel was applied to rats compared to model group. Conclusion Based on our findings, the ethosomes gel delivery system provided a new formulation for the topical delivery of HSYA, icariin, epimedin B and DA to counteract OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Hong-Mei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Long-Fei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ming-Yi Sun
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jia Liu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
22
|
Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur J Med Chem 2020; 192:112171. [DOI: 10.1016/j.ejmech.2020.112171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023]
|
23
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Berry KP, Lu QR. Chromatin modification and epigenetic control in functional nerve regeneration. Semin Cell Dev Biol 2019; 97:74-83. [PMID: 31301357 DOI: 10.1016/j.semcdb.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration. For instance, the regulatory mechanisms required for oligodendrocyte lineage progression could potentially play fundamental roles in myelin repair. In recent years, epigenetic chromatin modifications have been implicated in CNS myelination and functional nerve restoration. The pro-regenerative transcriptional program is likely silenced or repressed in adult neural cells including neurons and myelinating cells in the central and peripheral nervous systems limiting the capacity for repair after injury. In this review, we will discuss the roles of epigenetic mechanisms, including histone modifications, chromatin remodeling, and DNA methylation, in the maintenance and establishment of the myelination program during normal oligodendrocyte development and regeneration. We also discuss how these epigenetic processes impact myelination and axonal regeneration, and facilitate the improvement of current preclinical therapeutics for functional nerve regeneration in neurodegenerative disorders or after injury.
Collapse
Affiliation(s)
- Kalen P Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
25
|
|