1
|
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life (Basel) 2025; 15:110. [PMID: 39860050 PMCID: PMC11766477 DOI: 10.3390/life15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly. A deeper understanding of insect sensory physiology, especially during feeding, not only enhances our knowledge of insect biology but also offers significant opportunities for practical applications. This review highlights recent advancements in research on feeding-related sensory receptors, covering a wide range of insect species, from the model organism Drosophila melanogaster to agricultural and human pests. Additionally, this review examines the potential of targeting insect sensory receptors for precision pest control. Disrupting behaviors such as feeding and reproduction emerges as a promising strategy for pest management. By interfering with these essential behaviors, we can effectively control pest populations while minimizing environmental impacts and promoting ecological balance.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Chengwang Sheng
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Pesticide Science, Anhui Agricultural University, Hefei 230036, China
| | - Cassidy Kylene Lee
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Peter Nguyen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Physiology, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit coordinates the diversification of courtship strategies. Nature 2024; 635:142-150. [PMID: 39385031 PMCID: PMC11540906 DOI: 10.1038/s41586-024-08028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Mate recognition systems evolve rapidly to reinforce the reproductive boundaries between species, but the underlying neural mechanisms remain enigmatic. Here we leveraged the rapid coevolution of female pheromone production and male pheromone perception in Drosophila1,2 to gain insight into how the architecture of mate recognition circuits facilitates their diversification. While in some Drosophila species females produce unique pheromones that act to arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition3. We show that Drosophila yakuba males evolved the ability to use a sexually monomorphic pheromone, 7-tricosene, as an excitatory cue to promote courtship. By comparing key nodes in the pheromone circuits across multiple Drosophila species, we reveal that this sensory innovation arises from coordinated peripheral and central circuit adaptations: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-tricosene and, in turn, selectively signals to a distinct subset of P1 neurons in the central brain to trigger courtship. Such a modular circuit organization, in which different sensory inputs can independently couple to parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing novel sensory modalities to become linked to male arousal. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly coordinated to underlie the rapid evolution of mate recognition strategies across species.
Collapse
Affiliation(s)
- Rory T Coleman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Gabriel T Koreman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Megan L Cheng
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
3
|
Rossi M, Hausmann AE, Alcami P, Moest M, Roussou R, Van Belleghem SM, Wright DS, Kuo CY, Lozano-Urrego D, Maulana A, Melo-Flórez L, Rueda-Muñoz G, McMahon S, Linares M, Osman C, McMillan WO, Pardo-Diaz C, Salazar C, Merrill RM. Adaptive introgression of a visual preference gene. Science 2024; 383:1368-1373. [PMID: 38513020 PMCID: PMC7616200 DOI: 10.1126/science.adj9201] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.
Collapse
Affiliation(s)
- Matteo Rossi
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | - Pepe Alcami
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Markus Moest
- Department of Ecology and Research Department for Limnology, Mondsee; University of Innsbruck, Innsbruck, Austria
| | - Rodaria Roussou
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Chi-Yun Kuo
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| | - Daniela Lozano-Urrego
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Arif Maulana
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Lina Melo-Flórez
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Saoirse McMahon
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Mauricio Linares
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Richard M. Merrill
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| |
Collapse
|
4
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
5
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit architecture coordinates the diversification of courtship strategies in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558080. [PMID: 37745588 PMCID: PMC10516016 DOI: 10.1101/2023.09.16.558080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Identifying a mate is a central imperative for males of most species but poses the challenge of distinguishing a suitable partner from an array of potential male competitors or females of related species. Mate recognition systems are thus subject to strong selective pressures, driving the rapid coevolution of female sensory cues and male sensory preferences. Here we leverage the rapid evolution of female pheromones across the Drosophila genus to gain insight into how males coordinately adapt their detection and interpretation of these chemical cues to hone their mating strategies. While in some Drosophila species females produce unique pheromones that act to attract and arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition. By comparing several close and distantly-related Drosophila species, we reveal that D. yakuba males have evolved the distinct ability to use a sexually-monomorphic pheromone, 7-tricosene (7-T), as an excitatory cue to promote courtship, a sensory innovation that enables D. yakuba males to court in the dark thereby expanding their reproductive opportunities. To gain insight into the neural adaptations that enable 7-T to act as an excitatory cue, we compared the functional properties of two key nodes within the pheromone circuits of D. yakuba and a subset of its closest relatives. We show that the instructive role of 7-T in D. yakuba arises from concurrent peripheral and central circuit changes: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-T which in turn selectively signals to a distinct subset of P1 neurons in the central brain that trigger courtship behaviors. Such a modular circuit organization, in which different sensory inputs can independently couple to multiple parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing males to take advantage of novel sensory modalities to become aroused. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly linked to underlie the rapid evolution of mate recognition and courtship strategies across species.
Collapse
Affiliation(s)
- Rory T. Coleman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Ianessa Morantte
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Gabriel T. Koreman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Megan L. Cheng
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Vanessa Ruta
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
6
|
Goncharova AA, Besedina NG, Bragina JV, Danilenkova LV, Kamysheva EA, Fedotov SA. Courtship suppression in Drosophila melanogaster: The role of mating failure. PLoS One 2023; 18:e0290048. [PMID: 37561803 PMCID: PMC10414572 DOI: 10.1371/journal.pone.0290048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Drosophila melanogaster is a popular model organism in the study of memory due to a wide arsenal of methods used to analyze neuronal activity. The most commonly used tests in research of behavioral plasticity are shock avoidance associated with chemosensory cues and courtship suppression after mating failure. Many authors emphasize the value of courtship suppression as a model of behavior most appropriate to natural conditions. However, researchers often investigate courtship suppression using immobilized and decapitated females as targets of courtship by males, which makes the data obtained from such flies less valuable. In our study, we evaluate courtship suppression towards immature mobile non-receptive females after training with mated or immature females combined with an aversive stimulus (quinine). We have shown that the previously described mechanisms of courtship suppression, as a result of the association of the courtship object with the repellent, as well as due to increased sensitivity to the anti-aphrodisiac cVA after mating failure, are not confirmed when immature mobile females are used. We discuss the reasons for the discrepancies between our results and literature data, define the conditions to be met in the courtship suppression test if the aim is to analyze the natural forms of behavioral plasticity, and present data on the test modifications to approximate conditions to natural ones.
Collapse
Affiliation(s)
- Anna A. Goncharova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia G. Besedina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julia V. Bragina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Larisa V. Danilenkova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A. Kamysheva
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei A. Fedotov
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Laboratory of Amyloid Biology, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|
7
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
8
|
Bharti M, Bajpai A, Rautela U, Manzar N, Ateeq B, Sinha P. Human ERG oncoprotein represses a Drosophila LIM domain binding protein-coding gene Chip. Proc Natl Acad Sci U S A 2023; 120:e2211189119. [PMID: 36595681 PMCID: PMC9926275 DOI: 10.1073/pnas.2211189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.
Collapse
Affiliation(s)
- Mahima Bharti
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Anjali Bajpai
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Umanshi Rautela
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- National Institute of Immunology, India, 110067
| | - Nishat Manzar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Bushra Ateeq
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| |
Collapse
|
9
|
Roberts RJV, Pop S, Prieto-Godino LL. Evolution of central neural circuits: state of the art and perspectives. Nat Rev Neurosci 2022; 23:725-743. [DOI: 10.1038/s41583-022-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
|
10
|
Kopp A, Barmina O. Interspecific variation in sex-specific gustatory organs in Drosophila. J Comp Neurol 2022; 530:2439-2450. [PMID: 35603778 PMCID: PMC9339527 DOI: 10.1002/cne.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Drosophila males use leg gustatory bristles to discriminate between male and female cuticular pheromones as an important part of courtship behavior. In Drosophila melanogaster, several male-specific gustatory bristles are present on the anterior surface of the first tarsal segment of the prothoracic leg, in addition to a larger set of gustatory bristles found in both sexes. These bristles are thought to be specialized for pheromone detection. Here, we report the number and location of sex-specific gustatory bristles in 27 other Drosophila species. Although some species have a pattern similar to D. melanogaster, others lack anterior male-specific bristles but have many dorsal male-specific gustatory bristles instead. Some species have both anterior and dorsal male-specific bristles, while others lack sexual dimorphism entirely. In several distantly related species, the number of gustatory bristles is much greater in males than in females due to a male-specific transformation of ancestrally mechanosensory bristles to a chemosensory identity. This variation in the extent and pattern of sexual dimorphism may affect the formation and function of neuronal circuits that control Drosophila courtship and contribute to the evolution of mating behavior.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California Davis
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis
| |
Collapse
|
11
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
12
|
Auer TO, Shahandeh MP, Benton R. Drosophila sechellia: A Genetic Model for Behavioral Evolution and Neuroecology. Annu Rev Genet 2021; 55:527-554. [PMID: 34530638 DOI: 10.1146/annurev-genet-071719-020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
13
|
Hamida ZC, Farine JP, Ferveur JF, Soltani N. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108981. [PMID: 33493665 DOI: 10.1016/j.cbpc.2021.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Oberon® is a commercial formulation of spiromesifen, a pesticide inhibitor of lipid biosynthesis via acetyl CoA carboxylase, widely used in agricultural crop protection. However, its mode of action requires further analysis. We currently examined the effect of this product on Drosophila melanogaster as a non-target and model organism. Different concentrations of spiromesifen were administered by ingestion (and contact) during pre-imaginal development, and we evaluated its delayed action on adults. Our results suggest that spiromesifen induced insecticidal activity on D. melanogaster. Moreover, spiromesifen treatment significantly increased the duration of larval and pupal development at all tested concentrations while it shortened longevity in exposed males as compared to control males. Also, pre-imaginal exposure to spiromesifen quantitatively affected fatty acids supporting its primary mode of action on lipid synthesis. In addition, this product was found to modify cuticular hydrocarbon profiles in exposed female and male flies as well as their sexual behavior and reproductive capacity.
Collapse
Affiliation(s)
- Z C Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria; Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J P Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J F Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
14
|
Sato K, Yamamoto D. Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Front Behav Neurosci 2020; 14:597428. [PMID: 33343311 PMCID: PMC7746553 DOI: 10.3389/fnbeh.2020.597428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
15
|
Ward HKE, Moehring AJ. Genes underlying species differences in cuticular hydrocarbon production between Drosophila melanogaster and D. simulans. Genome 2020; 64:87-95. [PMID: 33211537 DOI: 10.1139/gen-2019-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface chemical compounds are key components of survival and reproduction in many species. Cuticular hydrocarbons (CHCs) are chemical compounds produced by all insects that are used for both desiccation resistance and chemical communication, including communication related to mating. In the species pair of Drosophila melanogaster and D. simulans, female CHCs stimulate conspecific males to mate and repel heterospecific males. While CHCs are a critical contributor to both reproductive success within a species and isolation between species, few genes underlying species variation in CHC profiles are known. Here, we use genetic mapping of the 3rd chromosome to test a suite of candidate genes for interspecies variation in CHCs. Candidate gene CG5946 was found to be involved in species differences in the production of 7,11-heptacosadiene and 7-tricosene between D. melanogaster and D. simulans. This is therefore a new candidate locus contributing to species-specific variation in the CHC profile. In the process of mapping genes for CHCs, we also identified 29 candidate genes for the reduced survival or inviability of interspecies hybrids.
Collapse
Affiliation(s)
- Heather K E Ward
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
16
|
Shahandeh MP, Brock C, Turner TL. Light dependent courtship behavior in Drosophila simulans and D. melanogaster. PeerJ 2020; 8:e9499. [PMID: 32742789 PMCID: PMC7369021 DOI: 10.7717/peerj.9499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
Differences in courtship signals and perception are well-known among Drosophila species. One such described difference is the dependency on light, and thus presumably vision, for copulation success. Many studies have described a difference in light-dependent copulation success between D. melanogaster and D. simulans, identifying D. simulans as a light-dependent species, and D. melanogaster as a light-independent one. However, many of these studies use assays of varying design and few strains to represent the entire species. Here, we attempt to better characterize this purported difference using 11 strains of each species, paired by collection location, in behavioral assays conducted at two different exposure times. We show that, while there is a species-wide difference in magnitude of light-dependent copulation success, D. melanogaster copulation success is, on average, still impaired in the dark at both exposure times we measured. Additionally, there is significant variation in strain-specific ability to copulate in the dark in both species across two different exposure times. We find that this variation correlates strongly with longitude in D. melanogaster, but not in D. simulans. We hypothesize that differences in species history and demography may explain behavioral variation. Finally, we use courtship assays to show that light-dependent copulation success in one D. simulans strain is driven in part by both males and females. We discuss potential differences in courtship signals and/or signal importance between these species and potential for further comparative studies for functional characterization.
Collapse
Affiliation(s)
- Michael P. Shahandeh
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Cameryn Brock
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Thomas L. Turner
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
17
|
Khallaf MA, Auer TO, Grabe V, Depetris-Chauvin A, Ammagarahalli B, Zhang DD, Lavista-Llanos S, Kaftan F, Weißflog J, Matzkin LM, Rollmann SM, Löfstedt C, Svatoš A, Dweck HKM, Sachse S, Benton R, Hansson BS, Knaden M. Mate discrimination among subspecies through a conserved olfactory pathway. SCIENCE ADVANCES 2020; 6:eaba5279. [PMID: 32704542 PMCID: PMC7360436 DOI: 10.1126/sciadv.aba5279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/07/2020] [Indexed: 05/22/2023]
Abstract
Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Thomas O. Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ana Depetris-Chauvin
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Byrappa Ammagarahalli
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-22362 Lund, Sweden
| | - Sofía Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Filip Kaftan
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jerrit Weißflog
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Luciano M. Matzkin
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ 85721, USA
| | - Stephanie M. Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Aleš Svatoš
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Hany K. M. Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
18
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
19
|
Behavioral Evolution of Drosophila: Unraveling the Circuit Basis. Genes (Basel) 2020; 11:genes11020157. [PMID: 32024133 PMCID: PMC7074016 DOI: 10.3390/genes11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Behavior is a readout of neural function. Therefore, any difference in behavior among different species is, in theory, an outcome of interspecies diversification in the structure and/or function of the nervous system. However, the neural diversity underlying the species-specificity in behavioral traits and its genetic basis have been poorly understood. In this article, we discuss potential neural substrates for species differences in the courtship pulse song frequency and mating partner choice in the Drosophila melanogaster subgroup. We also discuss possible neurogenetic mechanisms whereby a novel behavioral repertoire emerges based on the study of nuptial gift transfer, a trait unique to D. subobscura in the genus Drosophila. We found that the conserved central circuit composed primarily of fruitless-expressing neurons (the fru-circuit) serves for the execution of courtship behavior, whereas the sensory pathways impinging onto the fru-circuit or the motor pathways downstream of the fru-circuit are susceptible to changes associated with behavioral species differences.
Collapse
|
20
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
21
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|