1
|
Steinecke A, Bolton MM, Taniguchi H. Neuromodulatory control of inhibitory network arborization in the developing postnatal neocortex. SCIENCE ADVANCES 2022; 8:eabe7192. [PMID: 35263136 PMCID: PMC8906727 DOI: 10.1126/sciadv.abe7192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Interregional neuronal communication is pivotal to instructing and adjusting cortical circuit assembly. Subcortical neuromodulatory systems project long-range axons to the cortex and affect cortical processing. However, their roles and signaling mechanisms in cortical wiring remain poorly understood. Here, we explored whether and how the cholinergic system regulates inhibitory axonal ramification of neocortical chandelier cells (ChCs), which control spike generation by innervating axon initial segments of pyramidal neurons. We found that acetylcholine (ACh) signaling through nicotinic ACh receptors (nAChRs) and downstream T-type voltage-dependent calcium (Ca2+) channels cell-autonomously controls axonal arborization in developing ChCs through regulating filopodia initiation. This signaling axis shapes the basal Ca2+ level range in varicosities where filopodia originate. Furthermore, the normal development of ChC axonal arbors requires proper levels of activity in subcortical cholinergic neurons. Thus, the cholinergic system regulates inhibitory network arborization in the developing neocortex and may tune cortical circuit properties depending on early-life experiences.
Collapse
Affiliation(s)
- André Steinecke
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - McLean M. Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Hayano Y, Ishino Y, Hyun JH, Orozco CG, Steinecke A, Potts E, Oisi Y, Thomas CI, Guerrero-Given D, Kim E, Kwon HB, Kamasawa N, Taniguchi H. IgSF11 homophilic adhesion proteins promote layer-specific synaptic assembly of the cortical interneuron subtype. SCIENCE ADVANCES 2021; 7:eabf1600. [PMID: 34261648 PMCID: PMC8279514 DOI: 10.1126/sciadv.abf1600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/28/2021] [Indexed: 05/16/2023]
Abstract
The most prominent structural hallmark of the mammalian neocortical circuitry is the layer-based organization of specific cell types and synaptic inputs. Accordingly, cortical inhibitory interneurons (INs), which shape local network activity, exhibit subtype-specific laminar specificity of synaptic outputs. However, the underlying molecular mechanisms remain unknown. Here, we demonstrate that Immunoglobulin Superfamily member 11 (IgSF11) homophilic adhesion proteins are preferentially expressed in one of the most distinctive IN subtypes, namely, chandelier cells (ChCs) that specifically innervate axon initial segments of pyramidal neurons (PNs), and their synaptic laminar target. Loss-of-function experiments in either ChCs or postsynaptic cells revealed that IgSF11 is required for ChC synaptic development in the target layer. While overexpression of IgSF11 in ChCs enlarges ChC presynaptic boutons, expressing IgSF11 in nontarget layers induces ectopic ChC synapses. These findings provide evidence that synapse-promoting adhesion proteins, highly localized to synaptic partners, determine the layer-specific synaptic connectivity of the cortical IN subtype.
Collapse
Affiliation(s)
- Yasufumi Hayano
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yugo Ishino
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Jung Ho Hyun
- Cellular Basis of Neural Circuit Plasticity, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carlos G Orozco
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
- Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - André Steinecke
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Elizabeth Potts
- Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Connon I Thomas
- Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hyung-Bae Kwon
- Cellular Basis of Neural Circuit Plasticity, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Institute for Neurobiology, Martinsried, Munich 82152, Germany
| | - Naomi Kamasawa
- Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
3
|
Song B, Kang CY, Han JH, Kano M, Konnerth A, Bae S. In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Comput Struct Biotechnol J 2021; 19:2477-2485. [PMID: 34025938 PMCID: PMC8113754 DOI: 10.1016/j.csbj.2021.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/31/2022] Open
Abstract
Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.
Collapse
Affiliation(s)
- Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chan Young Kang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jun Hee Han
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Masanobu Kano
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Arthur Konnerth
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
4
|
Nishizono H, Yasuda R, Laviv T. Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Front Genome Ed 2020; 2:602970. [PMID: 34713226 PMCID: PMC8525404 DOI: 10.3389/fgeed.2020.602970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Hirofumi Nishizono
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | | |
Collapse
|
5
|
Hein R, Sake HJ, Pokoyski C, Hundrieser J, Brinkmann A, Baars W, Nowak-Imialek M, Lucas-Hahn A, Figueiredo C, Schuberth HJ, Niemann H, Petersen B, Schwinzer R. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class I low phenotype-Effects on immune status and susceptibility to human immune responses. Am J Transplant 2020; 20:988-998. [PMID: 31733031 DOI: 10.1111/ajt.15710] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have previously shown that SLA class I deficiency can be achieved in pigs by CRISPR/Cas9-mediated deletion of β2 -microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I was functionally inert, because no proper differentiation of the CD8+ T cell subset was observed in B2Mlow pigs. Cells from B2Mlow pigs were less capable in triggering proliferation of human peripheral blood mononuclear cells in vitro, which was mainly due to the nonresponsiveness of CD8+ T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg, CD4+ T cells, natural killer cells) lysed targets from both SLA class I+ wildtype and SLA class Ilow pigs with similar efficiency. These data indicate that the absence of SLA class I is an effective approach to prevent the activation of human CD8+ T cells during the induction phase of an anti-xenograft response. However, cytotoxic activity of cells during the effector phase cannot be controlled by this approach.
Collapse
Affiliation(s)
- Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Hendrik J Sake
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Monika Nowak-Imialek
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | | | | | - Heiner Niemann
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|