1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The intersections between neuroscience and medulloblastoma. Cancer Lett 2025; 620:217660. [PMID: 40154912 DOI: 10.1016/j.canlet.2025.217660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Medulloblastoma (MB) represents the most common malignant central nervous system tumor in childhood. The nervous system plays a critical role in the progression of MB, with interactions between the nervous system and cancer significantly influencing oncogenesis, tumor growth, invasion, stemness, and metabolism. These interactions also regulate angiogenesis, metastatic dissemination, the tumor immune microenvironment, and drug resistance. Investigating the nervous system-MB axis holds promise for identifying diagnostic markers, prognostic biomarkers, and therapeutic targets. It also provides insights into the molecular mechanisms underlying MB and informs the development of novel therapeutic strategies. This review summarizes the latest advancements in understanding the interplay between the nervous system and MB, including the role of glial cells in MB and the potential of drug repurposing targeting nervous system components for MB treatment. These findings underscore promising diagnostic and therapeutic opportunities for MB management. Additionally, we outline future research directions in neurosciences that may pave the way for innovative therapeutic approaches and deepen our understanding of this complex disease.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Alexandrova E, Smal M, Di Rosa D, Brancaccio RN, Parisi R, Russo F, Tarallo R, Nassa G, Giurato G, Weisz A, Rizzo F. BRPF1 inhibition reduces migration and invasion of metastatic ovarian cancer cells, representing a potential therapeutic target. Sci Rep 2025; 15:7602. [PMID: 40038391 PMCID: PMC11880521 DOI: 10.1038/s41598-025-92438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
Ovarian Cancer (OC) is the most lethal gynecological malignancy, characterized by peritoneal metastasis, directly linked to most OC-related deaths. Here, by interrogating CRISPR-Cas9 loss-of-function genetic screen data, we identified a list of genes essential for metastatic OC, including several well-known oncogenes (PAX8, CCNE1, WWTR1, WT1, KAT6A, MECOM, and SOX17) and others whose roles in OC have not yet been explored. Protein-protein interaction analysis of the selected genes revealed the presence of a protein network participating in the epigenetic regulation of gene expression. For one of the network components, BRPF1, we found that its increased expression correlates with OC progression and a poor prognosis for OC patients. Functional assays demonstrated that BRPF1 inhibition significantly reduces cellular migration and invasion, supporting its role in metastatic progression. Pharmacological blockade of BRPF1 using small molecule inhibitors resulted in reduced proliferation of high-grade serous OC cells through mechanisms involving the activation of programmed cell death, cell cycle deregulation, and enhanced DNA damage. Furthermore, analysis of transcriptional changes induced by BRPF1 targeting showed that the growth inhibitory effects may be mediated by the deregulation of PPARα signaling. The obtained results indicate that BRPF1 represents a novel potential therapeutic target for metastatic OC treatment.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy.
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy.
| | - Marharyta Smal
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
| | - Domenico Di Rosa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
| | - Rosario Nicola Brancaccio
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
| | - Roberto Parisi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
| | - Fabio Russo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
- Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
- Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
- Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
- Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica, Salernitana" University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy.
- Medical Genomics Program, Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy.
- Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy.
| |
Collapse
|
3
|
Shiraishi R, Cancila G, Kumegawa K, Torrejon J, Basili I, Bernardi F, Silva PBGD, Wang W, Chapman O, Yang L, Jami M, Nishitani K, Arai Y, Xiao Z, Yu H, Lo Re V, Marsaud V, Talbot J, Lombard B, Loew D, Jingu M, Okonechnikov K, Sone M, Motohashi N, Aoki Y, Pfister SM, Chavez L, Hoshino M, Maruyama R, Ayrault O, Kawauchi D. Cancer-specific epigenome identifies oncogenic hijacking by nuclear factor I family proteins for medulloblastoma progression. Dev Cell 2024; 59:2302-2319.e12. [PMID: 38834071 DOI: 10.1016/j.devcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Irene Basili
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Maki Jami
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yukimi Arai
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Valentina Lo Re
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Véronique Marsaud
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Maho Jingu
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan; Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Masaki Sone
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.
| |
Collapse
|
4
|
Ling J, Tang Z, Yang W, Li Y, Dong X. Pygo2 activates BRPF1 via Pygo2-H3K4me2/3 interaction to maintain malignant progression in colon cancer. Exp Cell Res 2023; 431:113696. [PMID: 37423512 DOI: 10.1016/j.yexcr.2023.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Epigenetic alterations have essential roles during colon adenocarcinoma (COAD) progression. As the coactivator of Wnt/b-catenin signaling, Pygopus 2 (Pygo2) binds H3K4me2/3 and participate in chromatin remodeling in multiple cancers. However, It remains unclear whether the Pygo2-H3K4me2/3 association has significance in COAD. We aimed to elucidate the roles of Pygo2 in COAD. Functionally, Pygo2 inhibition attenuated cell proliferation, self-renewal capacities in vitro. Pygo2 overexpression enhanced in vivo tumor growth. Besides, Pygo2 overexpression could also enhance cell migration ability and in vivo distal metastasis. Mechanistically, Pygo2 correlates positively with BRPF1 expressions, one epigenetic reader of histone acetylation. The luciferase reporter assay and Chromatin Immunoprecipitation (ChIP)-qPCR assay were used to find that Pygo2 coordinated with H3K4me2/3 modifications to activate BRPF1 transcriptions via binding to the promoter. Both Pygo2 and BRPF1 expressed highly in tumors and Pygo2 relied on BRPF1 to accelerate COAD progression, including cell proliferation rate, migration abilities, stemness features and in vivo tumor growth. Targeting BPRF1 (GSK5959) is effective to suppress in vitro growth of Pygo2high cell lines, and has mild effect on Pygo2low cells. The subcutaneous tumor model further demonstrated that GSK5959 could effectively suppress the in vivo growth of Pygo2high COAD, but not the Pygo2low subtype. Collectively, our study represented Pygo2/BRPF1 as an epigenetic vulnerability for COAD treatment with predictive significance.
Collapse
Affiliation(s)
- Jie Ling
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zhijie Tang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Wei Yang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Zhuang HH, Qu Q, Teng XQ, Dai YH, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp Mol Med 2023; 55:290-303. [PMID: 36720920 PMCID: PMC9981748 DOI: 10.1038/s12276-023-00934-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional deregulation, a cancer cell hallmark, is driven by epigenetic abnormalities in the majority of brain tumors, including adult glioblastoma and pediatric brain tumors. Epigenetic abnormalities can activate epigenetic regulatory elements to regulate the expression of oncogenes. Superenhancers (SEs), identified as novel epigenetic regulatory elements, are clusters of enhancers with cell-type specificity that can drive the aberrant transcription of oncogenes and promote tumor initiation and progression. As gene regulators, SEs are involved in tumorigenesis in a variety of tumors, including brain tumors. SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. In this review, we summarized the characteristics and identification, unique organizational structures, and activation mechanisms of SEs in tumors, as well as the clinical applications related to SEs in tumor therapy and prognostication. Based on a review of the literature, we discussed the relationship between SEs and different brain tumors and potential therapeutic targets, focusing on glioblastoma.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, PR China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410007, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
6
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
7
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
8
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
9
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
10
|
Xia M, Chen H, Chen T, Xue P, Dong X, Lin Y, Ma D, Zhou W, Shi W, Li H. Transcriptional Networks Identify BRPF1 as a Potential Drug Target Based on Inflammatory Signature in Primary Lower-Grade Gliomas. Front Oncol 2021; 11:766656. [PMID: 34926268 PMCID: PMC8674185 DOI: 10.3389/fonc.2021.766656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Gliomas are the most common tumors of the central nervous system and are classified into grades I-IV based on their histological characteristics. Lower-grade gliomas (LGG) can be divided into grade II diffuse low-grade gliomas and grade III moderate gliomas and have a relatively good prognosis. However, LGG often develops into high-grade glioma within a few years. This study aimed to construct and identify the prognostic value of an inflammatory signature and discover potential drug targets for primary LGG. We first screened differentially expressed genes in primary LGG (TCGA) compared with normal brain tissue (GTEx) that overlapped with inflammation-related genes from MSigDB. After survival analysis, nine genes were selected to construct an inflammatory signature. LGG patients with a high inflammatory signature score had a poor prognosis, and the inflammatory signature was a strong independent prognostic factor in both the training cohort (TCGA) and validation cohort (CGGA). Compared with the low-inflammatory signature group, differentially expressed genes in the high-inflammatory signature group were mainly enriched in immune-related signaling pathways, which is consistent with the distribution of immune cells in the high- and low-inflammatory signature groups. Integrating driver genes, upregulated genes and drug targets data, bromodomain and PHD finger-containing protein 1 (BRPF1) was selected as a potential drug target. Inhibition of BRPF1 function or knockdown of BRPF1 expression attenuated glioma cell proliferation and colony formation.
Collapse
Affiliation(s)
- Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Ping Xue
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Neonatal Diseases, Division of Neonatology, Children's Hospital of Fudan University, Ministry of Health, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Shi
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cheng CLH, Tsang FHC, Wei L, Chen M, Chin DWC, Shen J, Law CT, Lee D, Wong CCL, Ng IOL, Wong CM. Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer. Commun Biol 2021; 4:888. [PMID: 34285329 PMCID: PMC8292510 DOI: 10.1038/s42003-021-02405-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic deregulation plays an essential role in hepatocellular carcinoma (HCC) progression. Bromodomains are epigenetic "readers" of histone acetylation. Recently, bromodomain inhibitors have exhibited promising therapeutic potential for cancer treatment. Using transcriptome sequencing, we identified BRPF1 (bromodomain and PHD finger containing 1) as the most significantly upregulated gene among the 43 bromodomain-containing genes in human HCC. BRPF1 upregulation was significantly associated with poor patient survival. Gene ablation or pharmacological inactivation of BRPF1 significantly attenuated HCC cell growth in vitro and in vivo. BRPF1 was involved in cell cycle progression, senescence and cancer stemness. Transcriptome sequencing revealed that BRPF1 is a master regulator controlling the expression of multiple key oncogenes, including E2F2 and EZH2. We demonstrated that BRPF1 activated E2F2 and EZH2 expression by facilitating promoter H3K14 acetylation through MOZ/MORF complex. In conclusion, BRPF1 is frequently upregulated in human HCCs. Targeting BRPF1 may be an approach for HCC treatment.
Collapse
Affiliation(s)
- Carol Lai-Hung Cheng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Felice Hoi-Ching Tsang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lai Wei
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mengnuo Chen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jialing Shen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Derek Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
12
|
Shiraishi R, Kawauchi D. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci 2021; 112:2948-2957. [PMID: 34050694 PMCID: PMC8353939 DOI: 10.1111/cas.14990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered ’omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular‐targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non‐germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
13
|
Ballabio C, Gianesello M, Lago C, Okonechnikov K, Anderle M, Aiello G, Antonica F, Zhang T, Gianno F, Giangaspero F, Hassan BA, Pfister SM, Tiberi L. Notch1 switches progenitor competence in inducing medulloblastoma. SCIENCE ADVANCES 2021; 7:7/26/eabd2781. [PMID: 34162555 PMCID: PMC8221631 DOI: 10.1126/sciadv.abd2781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
The identity of the cell of origin is a key determinant of cancer subtype, progression, and prognosis. Group 3 medulloblastoma (MB) is a malignant childhood brain cancer with poor prognosis and few candidates as putative cell of origin. We overexpressed the group 3 MB genetic drivers MYC and Gfi1 in different candidate cells of origin in the postnatal mouse cerebellum. We found that S100b+ cells are competent to initiate group 3 MB, and we observed that S100b+ cells have higher levels of Notch1 pathway activity compared to Math1+ cells. We found that additional activation of Notch1 in Math1+ and Sox2+ cells was sufficient to induce group 3 MB upon MYC/Gfi1 expression. Together, our data suggest that the Notch1 pathway plays a critical role in group 3 MB initiation.
Collapse
Affiliation(s)
- Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesco Antonica
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Tingting Zhang
- Paris Brain Institute-Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 8, Paris, France
| | - Francesca Gianno
- Dept. of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Felice Giangaspero
- Dept. of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 8, Paris, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
14
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
15
|
Suter RK, Rodriguez-Blanco J, Ayad NG. Epigenetic pathways and plasticity in brain tumors. Neurobiol Dis 2020; 145:105060. [DOI: 10.1016/j.nbd.2020.105060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
|