1
|
Zheng ZQ, Shen L, Zhao LM, Ji HF. B vitamins as adjunct therapies for depressive disorder. Trends Endocrinol Metab 2025:S1043-2760(25)00082-7. [PMID: 40374496 DOI: 10.1016/j.tem.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
The rising prevalence of depressive disorder worldwide requires better interventional avenues. B vitamins are gaining increasing interest as potential therapeutic approaches in this context given current evidence for a bidirectional association between B vitamin deficiency and depressive disorder. We discuss how B vitamins and B vitamin-associated probiotic supplementation may represent an effective adjunctive treatment for depression, and highlight the key metabolic mechanisms involved. We also provide a perspective on the future of this field and advocate for further high-quality clinical trials to assess the benefits of B vitamins in this context and optimize their clinical implementation.
Collapse
Affiliation(s)
- Zi-Qing Zheng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China
| | - Liang Shen
- Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China.
| | - Li-Ming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Hong-Fang Ji
- Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Zhu M, Lv T, Peng M, Sun H, Li Y. PTP-3 regulated by VB12 is important for ageing health in C. elegans. NPJ AGING 2025; 11:10. [PMID: 39984496 PMCID: PMC11845502 DOI: 10.1038/s41514-025-00201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025]
Abstract
Ageing is associated with cognitive decline, which is a significant factor in the development of dementia. Vitamin B12 (VB12) is crucial for maintaining proper nervous system function, as well as for protein, fat, and carbohydrate metabolism, and DNA synthesis. Moreover, it helps prevent serious health conditions such as pernicious anemia, neurodegenerative diseases, and Alzheimer's disease. VB12 deficiency is common among the elderly population. We found that serum VB12 levels were significantly elevated in centenarians. Interestingly, VB12 supplementation delayed aging but also improved learning and memory in nematodes. Our results suggest that increasing VB12 activates ptp-3 and helps maintain good cognitive function in centenarians. Furthermore, aging is the gradual decline in bodily functions that impacts nearly all living organisms, with significant effects on salivary glands. Salivary gland degeneration may contribute to VB12 deficiency in the elderly, underscoring the crucial role of salivary regulation in VB12 absorption for centenarians.
Collapse
Affiliation(s)
- Man Zhu
- College of Biological and Food Engineering, Qujing Normal University, Qujing, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, China
| | - Mei Peng
- College of Biological and Food Engineering, Qujing Normal University, Qujing, China
| | - Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, China.
| |
Collapse
|
3
|
Singhvi A, Shaham S, Rapti G. Glia Development and Function in the Nematode Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2024; 16:a041346. [PMID: 38565269 PMCID: PMC11445397 DOI: 10.1101/cshperspect.a041346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nematode Caenorhabditis elegans is a powerful experimental setting for uncovering fundamental tenets of nervous system organization and function. Its nearly invariant and simple anatomy, coupled with a plethora of methodologies for interrogating single-gene functions at single-cell resolution in vivo, have led to exciting discoveries in glial cell biology and mechanisms of glia-neuron interactions. Findings over the last two decades reinforce the idea that insights from C. elegans can inform our understanding of glial operating principles in other species. Here, we summarize the current state-of-the-art, and describe mechanistic insights that have emerged from a concerted effort to understand C. elegans glia. The remarkable acceleration in the pace of discovery in recent years paints a portrait of striking molecular complexity, exquisite specificity, and functional heterogeneity among glia. Glial cells affect nearly every aspect of nervous system development and function, from generating neurons, to promoting neurite formation, to animal behavior, and to whole-animal traits, including longevity. We discuss emerging questions where C. elegans is poised to fill critical knowledge gaps in our understanding of glia biology.
Collapse
Affiliation(s)
- Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Rome 00015, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Fukui K, You F, Kato Y, Yuzawa S, Kishimoto A, Hara T, Kanome Y, Harakawa Y, Yoshikawa T, Inufusa H. A mixed antioxidant supplement improves cognitive function, and coordination in aged mice. J Clin Biochem Nutr 2024; 74:119-126. [PMID: 38510681 PMCID: PMC10948352 DOI: 10.3164/jcbn.23-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Accumulation of oxidative damage increases the risk of several disorders. To prevent these diseases, people consume supplements. However, there is little evidence of the impact of supplement intake on cognitive function. Recently, frailty and sarcopenia have become serious issues, and these phenomena include a risk of mild cognitive impairment. In this study, aged mice were fed the combination supplement and cognitive and motor functions were measured. Following 1 month of treatment with the supplement, significant improvements in cognitive function and neuromuscular coordination were observed. Following 2 weeks of treadmill training, treatment with the supplement dramatically increased running distance compared to that in untreated normal aged mice. Serum indices such as triglyceride and total cholesterol were significantly decreased in the supplement-treated aged mice compared to untreated aged mice. These results indicate that the combination supplement may play a role in maintaining cognitive function, coordination ability and improving lipid metabolism.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Fukka You
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- Anti-oxidant Research Laboratory, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Yugo Kato
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Shuya Yuzawa
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Ayuta Kishimoto
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takuma Hara
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Yuki Kanome
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Yoshiaki Harakawa
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
- Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- Anti-oxidant Research Laboratory, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
5
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Nair T, Chakraborty R, Singh P, Rahman SS, Bhaskar AK, Sengupta S, Mukhopadhyay A. Adaptive capacity to dietary Vitamin B12 levels is maintained by a gene-diet interaction that ensures optimal life span. Aging Cell 2022; 21:e13518. [PMID: 35032420 PMCID: PMC8761004 DOI: 10.1111/acel.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Diet regulates complex life-history traits such as longevity. For optimal lifespan, organisms employ intricate adaptive mechanisms whose molecular underpinnings are less known. We show that Caenorhabditis elegans FLR-4 kinase prevents lifespan differentials on the bacterial diet having higher Vitamin B12 levels. The flr-4 mutants are more responsive to the higher B12 levels of Escherichia coli HT115 diet, and consequently, have enhanced flux through the one-carbon cycle. Mechanistically, a higher level of B12 transcriptionally downregulates the phosphoethanolamine methyltransferase pmt-2 gene, which modulates phosphatidylcholine (PC) levels. Pmt-2 downregulation activates cytoprotective gene expression through the p38-MAPK pathway, leading to increased lifespan only in the mutant. Evidently, preventing bacterial B12 uptake or inhibiting one-carbon metabolism reverses all the above phenotypes. Conversely, supplementation of B12 to E. coli OP50 or genetically reducing PC levels in the OP50-fed mutant extends lifespan. Together, we reveal how worms maintain adaptive capacity to diets having varying micronutrient content to ensure a normal lifespan.
Collapse
Affiliation(s)
- Tripti Nair
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Rahul Chakraborty
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Praveen Singh
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Akash Kumar Bhaskar
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Arnab Mukhopadhyay
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
7
|
Rapti G. A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research. J Neurogenet 2021; 34:259-272. [PMID: 33446023 DOI: 10.1080/01677063.2020.1837799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the nervous system and its striking complexity is a remarkable feat of development. C. elegans served as a unique model to dissect the molecular events in neurodevelopment, from its early visionaries to the current booming neuroscience community. Soon after being introduced as a model, C. elegans was mapped at the level of genes, cells, and synapses, providing the first metazoan with a complete cell lineage, sequenced genome, and connectome. Here, I summarize mechanisms underlying C. elegans neurodevelopment, from the generation and diversification of neural components to their navigation and connectivity. I point out recent noteworthy findings in the fields of glia biology, sex dimorphism and plasticity in neurodevelopment, highlighting how current research connects back to the pioneering studies by Brenner, Sulston and colleagues. Multifaceted investigations in model organisms, connecting genes to cell function and behavior, expand our mechanistic understanding of neurodevelopment while allowing us to formulate emerging questions for future discoveries.
Collapse
Affiliation(s)
- Georgia Rapti
- European Molecular Biology Laboratory, Unit of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
8
|
Flis Z, Molik E. Importance of Bioactive Substances in Sheep's Milk in Human Health. Int J Mol Sci 2021; 22:4364. [PMID: 33921992 PMCID: PMC8122369 DOI: 10.3390/ijms22094364] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sheep's milk is an important source of bioactive substances that have health-promoting functions for the body. The valuable composition of sheep's milk is due to the high content of fatty acids, immunoglobulins, proteins, hormones, vitamins and minerals. Many biopeptides found in milk have antibacterial, antiviral and anti-inflammatory properties. The bioactive substances of sheep's milk also show anticancer properties. Sheep's milk, thanks to its content of CLA and orotic acid, prevents the occurrence of type 2 diabetes, Alzheimer's disease and cancer. Sheep's milk, as a product rich in bioactive substances, can be used as a medical aid to support the body in the fight against neurological and cancer diseases.
Collapse
Affiliation(s)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, 31-059 Krakow, Poland;
| |
Collapse
|
9
|
Zhang A, Yan D. C. elegans as a model to study glial development. FEBS J 2021; 289:1476-1485. [PMID: 33570807 DOI: 10.1111/febs.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glia make up roughly half of all cells in the mammalian nervous system and play a major part in nervous system development, function, and disease. Although research in the past few decades has shed light on their morphological and functional diversity, there is still much to be known about key aspects of their development such as the generation of glial diversity and the factors governing proper morphogenesis. Glia of the nematode C. elegans possess many developmental and morphological similarities with their vertebrate counterparts and can potentially be used as a model to understand certain aspects of glial biology owing to advantages such as its genetic tractability and fully mapped cell lineage. In this review, we summarize recent progress in our understanding of genetic pathways that regulate glial development in C. elegans and discuss how some of these findings may be conserved.
Collapse
Affiliation(s)
- Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Synergistic growth inhibition effect of TiO 2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111462. [PMID: 33069946 DOI: 10.1016/j.ecoenv.2020.111462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The co-existence of organic pollutants and nanoparticles in the environment may lead to combined biological effects. The joint toxicity of pollutants and nanoparticles has been receiving increasing attention from researchers, but few studies have focused on soil biota due to the complexity of soil matrices. This study investigated the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) at 0, 5, and 25 mg/kg and nanoparticulate TiO2 (nTiO2) at 0, 500, and 2500 mg/kg in a 3 × 3 factorial arrangement of treatments for 28 days (d) on Eisenia fetida (earthworm). Compared with the control group (the 0 mg/kg TDCIPP + 0 mg/kg nTiO2 treatment), all other single (TDCIPP or nTiO2) and binary (TDCIPP + nTiO2) treatments except for the single 500 mg/kg nTiO2 treatment significantly reduced the weight gain rate of E. fetida. The binary treatments had significantly greater such effect than their corresponding single treatments, exhibiting a synergistic toxicity between TDCIPP and nTiO2 on the growth of E. fetida. Since TDCIPP and nTiO2 had no significant effect on their concentrations in the soil or in E. fetida during binary exposure, the synergistic toxicity could be a result of the superimposition of the toxicity pathways of TDCIPP and nTiO2. Transcriptomic analysis of E. fetida intestinal region revealed that exposure to 25 mg/kg TDCIPP or 2500 mg/kg nTiO2 affected nutrient-related or cell apoptosis and DNA damage related genes, respectively; their co-exposure greatly inhibited genes related to nutrient digestion and absorption, while causing abnormal transcription of genes related to the development and maintenance of E. fetida's muscles, leading to synergistic toxicity. These findings provide new insights into the environmental risks of organophosphorus flame retardants, nanoparticles, and their co-exposure.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Qu Z, Zhang A, Yan D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. eLife 2020; 9:e57921. [PMID: 33211005 PMCID: PMC7676865 DOI: 10.7554/elife.57921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023] Open
Abstract
As one of the most-studied receptors, Robo plays functions in many biological processes, and its functions highly depend on Slit, the ligand of Robo. Here we uncover a Slit-independent role of Robo in glial migration and show that neurons can release an extracellular fragment of Robo upon cleavage to attract glia during migration in Caenorhabditis elegans. Furthermore, we identified the conserved cell adhesion molecule SYG-1/Neph as a receptor for the cleaved extracellular Robo fragment to mediate glial migration and SYG-1/Neph functions through regulation of the WAVE complex. Our studies reveal a previously unknown Slit-independent function and regulatory mechanism of Robo and show that the cleaved extracellular fragment of Robo can function as a ligand for SYG-1/Neph to guide glial migration. As Robo, the cleaved region of Robo, and SYG-1/Neph are all highly conserved across the animal kingdom, our findings may present a conserved Slit-independent Robo mechanism during brain development.
Collapse
Affiliation(s)
- Zhongwei Qu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Regeneration Next Initiative, Duke Center for Neurodegeneration and Neurotherapeutics, and Duke Institute for Brain Sciences, Duke University Medical CenterDurhamUnited States
| |
Collapse
|