1
|
Wang J, Guo C, Wei X, Pu X, Zhao Y, Xu C, Wang W. GPCR Sense Communication Among Interaction Nematodes with Other Organisms. Int J Mol Sci 2025; 26:2822. [PMID: 40141464 PMCID: PMC11943259 DOI: 10.3390/ijms26062822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Interactions between species give rise to chemical pathways of communication that regulate the interactions of transboundary species. The communication between nematodes and other species primarily occurs through the regulation of chemicals, with key species including plants, insects, bacteria, and nematode-trapping fungi that are closely associated with nematodes. G protein-coupled receptors (GPCRs) play a crucial role in interspecies communication. Certain flp genes, which function as GPCRs, exert varying degrees of influence on how nematodes interact with other species. These receptors facilitate the transmission of corresponding signals, thereby completing the interactions between species. This paper introduces the interactions between nematodes and other species and discusses the role of GPCRs in these organisms, contributing to a deeper understanding of the impact and significance of GPCRs in cross-border regulation between nematodes and other species. Furthermore, it is essential to leverage GPCRs in efforts to control pests.
Collapse
Affiliation(s)
- Jie Wang
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Changying Guo
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
| | - Xiaoli Wei
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Xiaojian Pu
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Yuanyuan Zhao
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Chengti Xu
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Wei Wang
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| |
Collapse
|
2
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Kaur S, Sang Y, Aballay A. Myotubularin-related protein protects against neuronal degeneration mediated by oxidative stress or infection. J Biol Chem 2022; 298:101614. [PMID: 35101447 PMCID: PMC8889260 DOI: 10.1016/j.jbc.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial infections have been linked to the onset and severity of neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, but the underlying mechanisms remain largely unknown. Here, we used a genetic screen for genes involved in protection from infection-associated neurodegeneration and identified the gene mtm-10. We then validated the role of the encoded myotubularin-related protein, MTM-10, in protecting the dendrites of Caenorhabditis elegans from degeneration mediated by oxidative stress or Pseudomonas aeruginosa infection. Further experiments indicated that mtm-10 is expressed in the AWC neurons of C. elegans, where it functions in a cell-autonomous manner to protect the dendrite degeneration caused by pathogen infection. We also confirm that the changes observed in the dendrites of the animals were not because of premature death or overall sickness. Finally, our studies indicated that mtm-10 functions in AWC neurons to preserve chemosensation after pathogen infection. These results reveal an essential role for myotubularin-related protein 10 in the protection of dendrite morphology and function against the deleterious effects of oxidative stress or infection.
Collapse
Affiliation(s)
- Supender Kaur
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yu Sang
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Wu B, Yan J, Yang J, Xia Y, Li D, Zhang F, Cao H. Extension of the Life Span by Acarbose: Is It Mediated by the Gut Microbiota? Aging Dis 2022; 13:1005-1014. [PMID: 35855337 PMCID: PMC9286917 DOI: 10.14336/ad.2022.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Acarbose can extend the life span of mice through a process involving the gut microbiota. Several factors affect the life span, including mitochondrial function, cellular senescence, telomere length, immune function, and expression of longevity-related genes. In this review, the effects of acarbose-regulated gut microbiota on the life span-influencing factors have been discussed. In addition, a novel theoretical basis for improving our understanding of the mechanisms by which acarbose extends the life span of mice has been suggested.
Collapse
Affiliation(s)
- Baiyun Wu
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- School of Medicine, Nantong University, Nantong, China.
| | - Jiai Yan
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Ju Yang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Yanping Xia
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Dan Li
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Cao
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Gao AW, El Alam G, Lalou A, Li TY, Molenaars M, Zhu Y, Overmyer KA, Shishkova E, Hof K, Bou Sleiman M, Houtkooper RH, Coon JJ, Auwerx J. Multi-omics analysis identifies essential regulators of mitochondrial stress response in two wild-type C. elegans strains. iScience 2022; 25:103734. [PMID: 35118355 PMCID: PMC8792074 DOI: 10.1016/j.isci.2022.103734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a promising pharmacological target for aging and age-related diseases. However, the integrative analysis of the impact of UPRmt activation on different signaling layers in animals with different genetic backgrounds is lacking. Here, we applied systems approaches to investigate the effect of UPRmt induced by doxycycline (Dox) on transcriptome, proteome, and lipidome in two genetically divergent worm strains, named N2 and CB4856. From the integrated omics datasets, we found that Dox prolongs lifespan of both worm strains through shared and strain-specific mechanisms. Specifically, Dox strongly impacts mitochondria, upregulates defense response, and lipid metabolism, while decreasing triglycerides. We further validated that lipid genes acs-2/20 and fat-7/6 were required for Dox-induced UPRmt and longevity in N2 and CB4856 worms, respectively. Our data have translational value as they indicate that the beneficial effects of Dox-induced UPRmt on lifespan are consistent across different genetic backgrounds through different regulators. Dox extends lifespan of N2 and CB4856 via shared and strain-specific mechanisms Dox controls mitochondria, defense responses, and lipid metabolism in both strains Dox-mediated longevity requires acs-2/20 in N2 and fat-7/6 in CB4856 worms
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Kevin Hof
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
6
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
7
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|