1
|
D'Italia G, Schroen B, Cosemans JM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2025; 12:1013-1028. [PMID: 39375979 PMCID: PMC11911585 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Judith M.E.M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
2
|
Herranz Ó, Berrocal P, Sicilia-Navarro C, Fernández-Infante C, Hernández-Cano L, Porras A, Guerrero C. C3G promotes bone marrow adipocyte expansion and hematopoietic regeneration after myeloablation by enhancing megakaryocyte niche function. J Hematol Oncol 2025; 18:38. [PMID: 40170099 PMCID: PMC11959767 DOI: 10.1186/s13045-025-01687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
C3G, a Rap1 GEF, promotes megakaryopoiesis and platelet function. Using transgenic and knock-out mouse models targeting C3G in megakaryocytes, we investigated whether C3G also affects the niche function of megakaryocytes during bone marrow (BM) recovery after myeloablation induced by 5-fluorouracil (5-FU), or total body irradiation (TBI) followed by bone marrow transplantation. C3G promoted megakaryocyte maturation and platelet production during recovery, along with increased white and red blood cell counts and enhanced survival of female mice after repeated doses of 5-FU. Additionally, megakaryocytes favored adipocyte differentiation through a C3G-mediated mechanism, likely involving Fgf1. Changes in the number or behavior of BM megakaryocytes and adipocytes influenced the hematopoietic stem cell pool, with C3G promoting its bias towards the myeloid-megakaryocytic lineage in both 5-FU- and TBI-ablated models. Therefore, C3G could be a potential target in therapies aimed at enhancing hematopoiesis in patients undergoing chemotherapy and/or BM transplantation.
Collapse
Affiliation(s)
- Óscar Herranz
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Centro de Investigación del Cáncer (CIC), USAL-CSIC, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
3
|
La Rosa F, Montecucco F, Liberale L, Sessarego M, Carbone F. Venous thrombosis and obesity: from clinical needs to therapeutic challenges. Intern Emerg Med 2025; 20:47-64. [PMID: 39269539 PMCID: PMC11794390 DOI: 10.1007/s11739-024-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Weight bias and stigma have limited the awareness of the systemic consequences related to obesity. As the narrative evolves, obesity is emerging as a driver and enhancer of many pathological conditions. Among these, the risk of venous thromboembolism (VTE) is a critical concern linked to obesity, ranking as the third most common cardiovascular condition. Obesity is recognized as a multifactorial risk factor for VTE, influenced by genetic, demographic, behavioral, and socio-economic conditions. Despite established links, the exact incidence of obesity related VTE in the general population remains largely unknown. The complexity of distinguishing between provoked and unprovoked VTE, coupled with gaps in obesity definition and assessment still complicates a tailored risk assessment of VTE risk. Obesity reactivity, hypercoagulability, and endothelial dysfunction are driven by the so-called 'adiposopathy'. This state of chronic inflammation and metabolic disturbance amplifies thrombin generation and alters endothelial function, promoting a pro-thrombotic environment. Additionally, the inflammation-induced clot formation-also referred to as 'immunothrombosis' further exacerbates VTE risk in people living with obesity. Furthermore, current evidence highlights significant gaps in the management of obesity related VTE, particularly concerning prophylaxis and treatment efficacy of anticoagulants in people living with obesity. This review underscores the need for tailored therapeutic approaches and well-designed clinical trials to address the unique challenges posed by obesity in VTE prevention and management. Advanced research and innovative strategies are imperative to improve outcomes and reduce the burden of VTE in people living with obesity.
Collapse
Affiliation(s)
- Federica La Rosa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Marta Sessarego
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
4
|
Pirotton L, de Cartier d’Yves E, Bertrand L, Beauloye C, Horman S. Platelet lipidomics and de novo lipogenesis: impact on health and disease. Curr Opin Hematol 2024; 31:217-223. [PMID: 38727017 PMCID: PMC11296274 DOI: 10.1097/moh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.
Collapse
Affiliation(s)
- Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Emma de Cartier d’Yves
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| |
Collapse
|
5
|
Trivanović D, Vujačić M, Labella R, Djordjević IO, Ćazić M, Chernak B, Jauković A. Molecular Deconvolution of Bone Marrow Adipose Tissue Interactions with Malignant Hematopoiesis: Potential for New Therapy Development. Curr Osteoporos Rep 2024; 22:367-377. [PMID: 38922359 DOI: 10.1007/s11914-024-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE OF REVIEW Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via β-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY, USA
| | - Ivana Okić Djordjević
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Marija Ćazić
- Department of Hematology and Oncology, University Children's Hospital Tiršova, 11000, Belgrade, Serbia
| | - Brian Chernak
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Li Y, Sun T, Chen J, Liu X, Fu R, Xue F, Liu W, Ju M, Dai X, Li H, Wang W, Chi Y, Li T, Shao S, Yang R, Chen Y, Zhang L. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024; 204:2405-2417. [PMID: 38438130 DOI: 10.1111/bjh.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuai Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Fleetwood AJ, Noonan J, La Gruta N, Kallies A, Murphy AJ. Immunometabolism in atherosclerotic disorders. NATURE CARDIOVASCULAR RESEARCH 2024; 3:637-650. [PMID: 39196223 DOI: 10.1038/s44161-024-00473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction and heart failure, are the leading causes of morbidity and mortality worldwide. Emerging evidence suggests a crucial role for immune cell dysfunction and inflammation in the progression of this complex set of diseases. Recent advances demonstrate that immune cells, tightly linked to CVD pathogenesis, are sensitive to environmental signals and respond by engaging immunometabolic networks that shape their behavior. Inflammatory cues and altered nutrient availability within atherosclerotic plaques or following ischemia synergize to elicit metabolic shifts in immune cells that influence the course of disease pathology. Understanding these metabolic adaptations and how they contribute to cellular dysfunction may reveal novel therapeutic approaches for the treatment of CVD. Here we provide a comprehensive summary of the metabolic reprogramming that occurs in immune cells and their progenitors during CVD, offering insights into the potential therapeutic interventions to mitigate disease progression.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jonathan Noonan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nicole La Gruta
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Izzo F, Myers RM, Ganesan S, Mekerishvili L, Kottapalli S, Prieto T, Eton EO, Botella T, Dunbar AJ, Bowman RL, Sotelo J, Potenski C, Mimitou EP, Stahl M, El Ghaity-Beckley S, Arandela J, Raviram R, Choi DC, Hoffman R, Chaligné R, Abdel-Wahab O, Smibert P, Ghobrial IM, Scandura JM, Marcellino B, Levine RL, Landau DA. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 2024; 629:1149-1157. [PMID: 38720070 PMCID: PMC11139586 DOI: 10.1038/s41586-024-07388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.
Collapse
Affiliation(s)
- Franco Izzo
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Levan Mekerishvili
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay Kottapalli
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Elliot O Eton
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theo Botella
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew J Dunbar
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eleni P Mimitou
- New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Maximilian Stahl
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - JoAnn Arandela
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Raviram
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel C Choi
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligné
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- SAIL: Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Smibert
- New York Genome Center, New York, NY, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph M Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ross L Levine
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Karimnia N, Harris J, Heazlewood SY, Cao B, Nilsson SK. Metabolic regulation of aged hematopoietic stem cells: key players and mechanisms. Exp Hematol 2023; 128:2-9. [PMID: 37778498 DOI: 10.1016/j.exphem.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Nazanin Karimnia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; School of Clinical Sciences, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| |
Collapse
|
11
|
Hernández-Barrientos D, Pelayo R, Mayani H. The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 2023; 114:404-420. [PMID: 37386890 DOI: 10.1093/jleuko/qiad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.
Collapse
Affiliation(s)
- Daniel Hernández-Barrientos
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| | - Rosana Pelayo
- Onco-Immunology Laboratory, Eastern Biomedical Research Center, IMSS, Km 4.5 Atlixco-Metepec, 74360, Puebla, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| |
Collapse
|
12
|
Jain K, Tyagi T, Hwa J. Lipid remodeling in megakaryocyte differentiation and platelet biogenesis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:803-804. [PMID: 37736249 PMCID: PMC10512809 DOI: 10.1038/s44161-023-00324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Lipid remodeling, from fatty acid transport and de novo lipid synthesis, is necessary for megakaryocyte differentiation and platelet production. Dietary saturated fatty acids, impaired fatty acid transport and/or dysfunction in lipid biogenesis can contribute to low platelet counts.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
de Jonckheere B, Kollotzek F, Münzer P, Göb V, Fischer M, Mott K, Coman C, Troppmair NN, Manke MC, Zdanyte M, Harm T, Sigle M, Kopczynski D, Bileck A, Gerner C, Hoffmann N, Heinzmann D, Assinger A, Gawaz M, Stegner D, Schulze H, Borst O, Ahrends R. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:835-852. [PMID: 38075556 PMCID: PMC7615361 DOI: 10.1038/s44161-023-00325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.
Collapse
Affiliation(s)
- Bianca de Jonckheere
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Vanessa Göb
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Melina Fischer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Kristina Mott
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Austria
| | - Nina Nicole Troppmair
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Mailin-Christin Manke
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Monika Zdanyte
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | | | - Andrea Bileck
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Nils Hoffmann
- Institute of Analytical Chemistry, University of Vienna, Austria
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5) Jülich, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Alice Assinger
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Harald Schulze
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Austria
| |
Collapse
|
14
|
Barrachina MN, Pernes G, Becker IC, Allaeys I, Hirsch TI, Groeneveld DJ, Khan AO, Freire D, Guo K, Carminita E, Morgan PK, Collins TJC, Mellett NA, Wei Z, Almazni I, Italiano JE, Luyendyk J, Meikle PJ, Puder M, Morgan NV, Boilard E, Murphy AJ, Machlus KR. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. NATURE CARDIOVASCULAR RESEARCH 2023; 2:746-763. [PMID: 39195958 PMCID: PMC11909960 DOI: 10.1038/s44161-023-00305-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2024]
Abstract
Lipids contribute to hematopoiesis and membrane properties and dynamics; however, little is known about the role of lipids in megakaryopoiesis. Here we show that megakaryocyte progenitors, megakaryocytes and platelets present a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake as well as de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in low platelets. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production and that changes in dietary fatty acids may be a viable target to modulate platelet counts.
Collapse
Affiliation(s)
- Maria N Barrachina
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Isabelle Allaeys
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Thomas I Hirsch
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karen Guo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Pooranee K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Thomas J C Collins
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - James Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Peter J Meikle
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eric Boilard
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
16
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
17
|
Barrachina MN, Pernes G, Becker IC, Allaeys I, Hirsch TI, Groeneveld DJ, Khan AO, Freire D, Guo K, Carminita E, Morgan PK, Collins TJ, Mellett NA, Wei Z, Almazni I, Italiano JE, Luyendyk J, Meikle PJ, Puder M, Morgan NV, Boilard E, Murphy AJ, Machlus KR. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.527706. [PMID: 36798332 PMCID: PMC9934665 DOI: 10.1101/2023.02.12.527706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Lipids contribute to hematopoiesis and membrane properties and dynamics, however, little is known about the role of lipids in megakaryopoiesis. Here, a lipidomic analysis of megakaryocyte progenitors, megakaryocytes, and platelets revealed a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake and de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in thrombocytopenia. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production, and that changes in dietary fatty acids may be a novel and viable target to modulate platelet counts.
Collapse
Affiliation(s)
- Maria N Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Isabelle Allaeys
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, G1V4G2 Canada
| | - Thomas I. Hirsch
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, U.K. OX3 9DS
| | - Daniela Freire
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Karen Guo
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Pooranee K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Thomas J Collins
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - James Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Peter J Meikle
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Puder
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
| | - Eric Boilard
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, G1V4G2 Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| |
Collapse
|
18
|
Vauclard A, Bellio M, Valet C, Borret M, Payrastre B, Severin S. Obesity: Effects on bone marrow homeostasis and platelet activation. Thromb Res 2022. [DOI: 10.1016/j.thromres.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
20
|
Hellmich C, Wojtowicz EE. You are what you eat: How to best fuel your immune system. Front Immunol 2022; 13:1003006. [PMID: 36211413 PMCID: PMC9533172 DOI: 10.3389/fimmu.2022.1003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.
Collapse
Affiliation(s)
- Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Edyta E. Wojtowicz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
21
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
22
|
Li Z, Bowers E, Zhu J, Yu H, Hardij J, Bagchi DP, Mori H, Lewis KT, Granger K, Schill RL, Romanelli SM, Abrishami S, Hankenson KD, Singer K, Rosen CJ, MacDougald OA. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 2022; 11:e78496. [PMID: 35731039 PMCID: PMC9273217 DOI: 10.7554/elife.78496] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, Pnpla2 gene). BMAd-Pnpla2-/- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction. BMAd-specific Pnpla2 deficiency compounds the effects of caloric restriction on loss of trabecular bone in male mice, likely due to impaired osteoblast expression of collagen genes and reduced osteoid synthesis. RNA sequencing analysis of bone marrow adipose tissue reveals that caloric restriction induces dramatic elevations in extracellular matrix organization and skeletal development genes, and energy from BMAd is required for these adaptations. BMAd-derived energy supply is also required for bone regeneration upon injury, and maintenance of bone mass with cold exposure.
Collapse
Affiliation(s)
- Ziru Li
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Emily Bowers
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Hui Yu
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Julie Hardij
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Devika P Bagchi
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Hiroyuki Mori
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Kenneth T Lewis
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Katrina Granger
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Rebecca L Schill
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Steven M Romanelli
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Simin Abrishami
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
| | - Kanakadurga Singer
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | | | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of Internal MedicineAnn ArborUnited States
| |
Collapse
|
23
|
The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood 2022; 139:483-491. [PMID: 34587234 PMCID: PMC8938937 DOI: 10.1182/blood.2021012827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023] Open
Abstract
Megakaryocytes (MKs), the largest of the hematopoietic cells, are responsible for producing platelets by extending and depositing long proplatelet extensions into the bloodstream. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells (HSCs) along the myeloid branch of hematopoiesis. However, recent studies suggest that MKs can be generated from multiple pathways, some of which do not require transit through multipotent or bipotent MK-erythroid progenitor stages in steady-state and emergency conditions. Growing evidence suggests that these emergency conditions are due to stress-induced molecular changes in the bone marrow (BM) microenvironment, also called the BM niche. These changes can result from insults that affect the BM cellular composition, microenvironment, architecture, or a combination of these factors. In this review, we explore MK development, focusing on recent studies showing that MKs can be generated from multiple divergent pathways. We highlight how the BM niche may encourage and alter these processes using different mechanisms of communication, such as direct cell-to-cell contact, secreted molecules (autocrine and paracrine signaling), and the release of cellular components (eg, extracellular vesicles). We also explore how MKs can actively build and shape the surrounding BM niche.
Collapse
|
24
|
Labella R, Little-Letsinger S, Avilkina V, Sarkis R, Tencerova M, Vlug A, Palmisano B. Next Generation Bone Marrow Adiposity Researchers: Report From the 1 st BMAS Summer School 2021. Front Endocrinol (Lausanne) 2022; 13:879588. [PMID: 35498418 PMCID: PMC9043644 DOI: 10.3389/fendo.2022.879588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The first International Summer School on Bone Marrow Adiposity was organized by members of Bone Marrow Adiposity Society and held virtually on September 6-8 2021. The goal of this meeting was to bring together young scientists interested in learning about bone marrow adipose tissue biology and pathology. Fifty-two researchers from different backgrounds and fields, ranging from bone physiopathology to adipose tissue biology and hematology, participated in the summer school. The meeting featured three keynote lectures on the fundamentals of bone marrow adiposity, three scientific workshops on technical considerations in studying bone marrow adiposity, and six motivational and career development lectures, spanning from scientific writing to academic career progression. Moreover, twenty-one participants presented their work in the form of posters. In this report we highlight key moments and lessons learned from the event.
Collapse
Affiliation(s)
- Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, United States
| | | | - Viktorjia Avilkina
- Marrow Adiposity and Bone Lab (MAB Lab) ULR4490, Univ Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czechia
| | - Annegreet Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Biagio Palmisano,
| |
Collapse
|
25
|
Czernik PJ, Golonka RM, Chakraborty S, Yeoh BS, Abokor AA, Saha P, Yeo JY, Mell B, Cheng X, Baroi S, Tian Y, Patterson AD, Joe B, Vijay-Kumar M, Lecka-Czernik B. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content. Physiol Genomics 2021; 53:518-533. [PMID: 34714176 PMCID: PMC8714805 DOI: 10.1152/physiolgenomics.00017.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Integration of microbiota in a host begins at birth and progresses during adolescence, forming a multidirectional system of physiological interactions. Here, we present an instantaneous effect of natural, bacterial gut colonization on the acceleration of longitudinal and radial bone growth in germ-free born, 7-wk-old male rats. Changes in bone mass and structure were analyzed after 10 days following the onset of colonization through cohousing with conventional rats and revealed unprecedented acceleration of bone accrual in cortical and trabecular compartments, increased bone tissue mineral density, improved proliferation and hypertrophy of growth plate chondrocytes, bone lengthening, and preferential deposition of periosteal bone in the tibia diaphysis. In addition, the number of small in size adipocytes increased, whereas the number of megakaryocytes decreased, in the bone marrow of conventionalized germ-free rats indicating that not only bone mass but also bone marrow environment is under control of gut microbiota signaling. The changes in bone status paralleled with a positive shift in microbiota composition toward short-chain fatty acids (SCFA)-producing microbes and a considerable increase in cecal SCFA concentrations, specifically butyrate. Furthermore, reconstitution of the host holobiont increased hepatic expression of IGF-1 and its circulating levels. Elevated serum levels of 25-hydroxy vitamin D and alkaline phosphatase pointed toward an active process of bone formation. The acute stimulatory effect on bone growth occurred independently of body mass increase. Overall, the presented model of conventionalized germ-free rats could be used to study microbiota-based therapeutics for combatting dysbiosis-related bone disorders.
Collapse
Affiliation(s)
- Piotr J Czernik
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M Golonka
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Saroj Chakraborty
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmed A Abokor
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ji-Youn Yeo
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sudipta Baroi
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beata Lecka-Czernik
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
26
|
Dai W, Choubey M, Patel S, Singer HA, Ozcan L. Adipocyte CAMK2 deficiency improves obesity-associated glucose intolerance. Mol Metab 2021; 53:101300. [PMID: 34303021 PMCID: PMC8365526 DOI: 10.1016/j.molmet.2021.101300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Obesity-related adipose tissue dysfunction has been linked to the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Impaired calcium homeostasis is associated with altered adipose tissue metabolism; however, the molecular mechanisms that link disrupted calcium signaling to metabolic regulation are largely unknown. Here, we investigated the contribution of a calcium-sensing enzyme, calcium/calmodulin-dependent protein kinase II (CAMK2), to adipocyte function, obesity-associated insulin resistance, and glucose intolerance. METHODS To determine the impact of adipocyte CAMK2 deficiency on metabolic regulation, we generated a conditional knockout mouse model and acutely deleted CAMK2 in mature adipocytes. We further used in vitro differentiated adipocytes to dissect the mechanisms by which CAMK2 regulates adipocyte function. RESULTS CAMK2 activity was increased in obese adipose tissue, and depletion of adipocyte CAMK2 in adult mice improved glucose intolerance and insulin resistance without an effect on body weight. Mechanistically, we found that activation of CAMK2 disrupted adipocyte insulin signaling and lowered the amount of insulin receptor. Further, our results revealed that CAMK2 contributed to adipocyte lipolysis, tumor necrosis factor alpha (TNFα)-induced inflammation, and insulin resistance. CONCLUSIONS These results identify a new link between adipocyte CAMK2 activity, metabolic regulation, and whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Wen Dai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mayank Choubey
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sonal Patel
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Jiang LP, Ji JZ, Ge PX, Zhu T, Mi QY, Tai T, Li YF, Xie HG. Is platelet responsiveness to clopidogrel attenuated in overweight or obese patients and why? A reverse translational study in mice. Br J Pharmacol 2021; 179:46-64. [PMID: 34415054 DOI: 10.1111/bph.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Overweight or obese patients exhibit poorer platelet responses to clopidogrel. However, the mechanisms behind this phenotype remain to be elucidated. Here, we sought to discover whether and why obesity could affect the metabolic activation of and/or platelet response to clopidogrel in obese patients and high-fat diet-induced obese mice. EXPERIMENTAL APPROACH A post hoc stratified analysis of an observational clinical study was performed to investigate changes in residual platelet reactivity with increasing body weight in patients taking clopidogrel. Furthermore, high-fat diet-induced obese mice were used to reveal alterations in systemic exposure of clopidogrel thiol active metabolite H4, ADP-induced platelet activation and aggregation, the expression of genes involved in the metabolic activation of clopidogrel, count of circulating reticulated and mature platelets, and proliferation profiles of megakaryocytes in bone marrow. The relevant genes and potential signalling pathways were predicted and enriched according to the GEO datasets available from obese patients. KEY RESULTS Obese patients exhibited significantly attenuated antiplatelet effects of clopidogrel. In diet-induced obese mice, systemic exposure of clopidogrel active metabolite H4 was reduced but that of its hydrolytic metabolite was increased due to down-regulation of certain P450s but up-regulation of carboxylesterase-1 in the liver. Moreover, enhanced proliferation of megakaryocytes and elevated platelet count also contributed. CONCLUSION AND IMPLICATIONS Obesity attenuated metabolic activation of clopidogrel and increased counts of circulating reticulated and mature platelets, leading to impaired platelet responsiveness to the drug in mice, suggesting that clopidogrel dosage may need to be adjusted adequately in overweight or obese patients.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng-Xin Ge
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Fei Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
28
|
Scheller EL, McGee-Lawrence ME, Lecka-Czernik B. Report From the 6 th International Meeting on Bone Marrow Adiposity (BMA2020). Front Endocrinol (Lausanne) 2021; 12:712088. [PMID: 34335478 PMCID: PMC8323480 DOI: 10.3389/fendo.2021.712088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The 6th International Meeting on Bone Marrow Adiposity (BMA) entitled "Marrow Adiposity: Bone, Aging, and Beyond" (BMA2020) was held virtually on September 9th and 10th, 2020. The mission of this meeting was to facilitate communication and collaboration among scientists from around the world who are interested in different aspects of bone marrow adiposity in health and disease. The BMA2020 meeting brought together 198 attendees from diverse research and clinical backgrounds spanning fields including bone biology, endocrinology, stem cell biology, metabolism, oncology, aging, and hematopoiesis. The congress featured an invited keynote address by Ormond MacDougald and ten invited speakers, in addition to 20 short talks, 35 posters, and several training and networking sessions. This report summarizes and highlights the scientific content of the meeting and the progress of the working groups of the BMA society (http://bma-society.org/).
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
29
|
Al-Hamed FS, Rodan R, Ramirez-Garcialuna JL, Elkashty O, Al-Shahrani N, Tran SD, Lordkipanidzé M, Kaartinen M, Badran Z, Tamimi F. The effect of aging on the bone healing properties of blood plasma. Injury 2021; 52:1697-1708. [PMID: 34049703 DOI: 10.1016/j.injury.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Age-related changes in blood composition have been found to affect overall health. Thus, this study aimed to understand the effect of these changes on bone healing by assessing how plasma derived from young and old rats affect bone healing using a rat model. METHODS . Blood plasma was collected from 6-month and 24-month old rats. Differences in elemental composition and metabolome were assessed using optical emission spectrometry and liquid mass spectrometry, respectively. Bilateral tibial bone defects were created in eight rats. Young plasma was randomly applied to one defect, while aged plasma was applied to the contralateral one. Rats were euthanized after two weeks, and their tibiae were analyzed using micro-CT and histology. The proteome of bone marrow was analyzed in an additional group of three rats. RESULTS Bone-defects treated with aged-plasma were significantly bigger in size and presented lower bone volume/tissue volume compared to defects treated with young-plasma. Histomorphometric analysis showed fewer mast cells, macrophages, and lymphocytes in defects treated with old versus young plasma. The proteome analysis showed that young plasma upregulated pathways required for bone healing (e.g. RUNX2, platelet signaling, and crosslinking of collagen fibrils) whereas old plasma upregulated pathways, involved in disease and inflammation (e.g. IL-7, IL-15, IL-20, and GM-CSF signaling). Plasma derived from old rats presented higher concentrations of iron, phosphorous, and nucleotide metabolites as well as lower concentrations of platelets, citric acid cycle, and pentose phosphate pathway metabolites compared to plasma derived from young rats. CONCLUSION bone defects treated with plasma-derived from young rats showed better healing compared to defects treated with plasma-derived from old rats. The application of young and old plasmas has different effects on the proteome of bone defects.
Collapse
Affiliation(s)
| | - Rania Rodan
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Senior specialist in periodontology, Royal Medical Services, Amman, Jordan
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Mari Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Zahi Badran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France; College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
30
|
Affiliation(s)
- Ishac Nazy
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Ramanathan G, Hoover BM, Fleischman AG. Impact of Host, Lifestyle and Environmental Factors in the Pathogenesis of MPN. Cancers (Basel) 2020; 12:E2038. [PMID: 32722135 PMCID: PMC7463688 DOI: 10.3390/cancers12082038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPNs) occur when there is over-production of myeloid cells stemming from hematopoietic stem cells with constitutive activation of JAK/STAT signaling, with JAK2V617F being the most commonly occurring somatic driver mutation. Chronic inflammation is a hallmark feature of MPNs and it is now evident that inflammation is not only a symptom of MPN but can also provoke development and precipitate progression of disease. Herein we have considered major MPN driver mutation independent host, lifestyle, and environmental factors in the pathogenesis of MPN based upon epidemiological and experimental data. In addition to the traditional risk factors such as advanced age, there is evidence to indicate that inflammatory stimuli such as smoking can promote and drive MPN clone emergence and expansion. Diet induced inflammation could also play a role in MPN clonal expansion. Recognition of factors associated with MPN development support lifestyle modifications as an emerging therapeutic tool to restrain inflammation and diminish MPN progression.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92617, USA;
| | - Brianna M Hoover
- Department of Biological Chemistry, University of California, Irvine, CA 92617, USA;
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92617, USA;
- Department of Biological Chemistry, University of California, Irvine, CA 92617, USA;
| |
Collapse
|