1
|
Zhang S, Hu W, Zhao Y, Liao Y, Zha K, Zhang W, Yu C, Liao J, Li H, Zhou W, Cao F, Mi B, Liu G. Bidirectional modulation of glycolysis using a multifunctional nanocomposite hydrogel promotes bone fracture healing in type 2 diabetes mellitus. Bioact Mater 2025; 50:152-170. [PMID: 40256330 PMCID: PMC12008547 DOI: 10.1016/j.bioactmat.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Fracture healing in patients with type 2 diabetes mellitus (T2D) is markedly impaired, characterized by a prolonged inflammation phase and defective osteoblast differentiation at the fracture site. In this study, we identified aberrant cellular glycolysis at T2D fracture sites, with bone marrow mesenchymal stem cells (BMSCs) exhibiting suppressed glycolysis and macrophages displaying enhanced glycolysis, mediated by the dysregulation of hypoxia-inducible factor-1α (HIF-1α). To rectify these metabolic imbalances, we developed a multifunctional nanocomposite PN@MHV hydrogel. Myricitrin, a flavonoid glycoside, forms the MHV hydrogel by cross-linking with HA-PBA and PVA via hydrogen bonds, and upregulates glycolysis through HIF-1α, thus promoting osteoblast differentiation under high glucose environment. To further regulate the inflammatory microenvironment, we incorporated nanoparticles loaded with PX-478, a HIF-1α specific inhibitor, into the hydrogel, with folic acid covalently modified to target proinflammatory M1 macrophages. This PN@MHV hydrogel bidirectionally regulated glycolysis via HIF-1α, enhancing osteoblast differentiation while attenuating macrophage-mediated inflammation. Comprehensive in vitro and in vivo experiments in a T2D fracture mouse model confirmed the hydrogel's ability to improve the inflammatory microenvironment and accelerate bone healing. Our findings underscore the therapeutic potential of targeting cellular glycolysis as a promising approach for enhancing fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
2
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
3
|
Ji P, Li Q, Zhang Y, Jin J, Zhang Y, Yuan Z, Shen G, Cao Q, Wu Y, Wang P, Liu W. The role of RAB12 in inhibiting osteogenic differentiation and driving metabolic dysregulation in osteoporosis. Life Sci 2025; 370:123590. [PMID: 40147529 DOI: 10.1016/j.lfs.2025.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
AIMS The osteogenic differentiation of mesenchymal stem cells (MSCs) is crucial in osteoporosis, and the metabolic level of the bone microenvironment directly affects metabolic dysregulation in postmenopausal women. RAB12 is a member of the small GTPase Rab family proteins, known to play an important role in autophagy. However, the role of RAB12 in the osteogenic differentiation of osteoporotic hMSCs remains unclear. MATERIALS AND METHOD Immunohistochemical staining was used to validate the high expression of RAB12 in aged osteoporotic mouse models and ovariectomized (OVX) mouse models. Co-immunoprecipitation (Co-IP) and LC-MS/MS were employed to explore downstream proteins that may interact with RAB12. Adenovirus containing RAB12 siRNA sequences was injected into the tail vein of OVX osteoporotic mice to analyze the impact of the RAB12/PCBP1/GLUT1 axis on MSC osteogenic differentiation. KEY FINDINGS We found that RAB12 expression is upregulated in elderly osteoporotic patients and in osteoporotic mouse models. RAB12 negatively regulates the osteogenic differentiation of hMSCs both in vivo and in vitro. RAB12 interacts with the PCBP1 protein, affecting its autophagic degradation when its expression levels change. RAB12 regulates the transcriptional level of GLUT1 by influencing the autophagic degradation of PCBP1, thereby affecting MSC's regulation of glucose uptake, which in turn impacts MSC osteogenic differentiation and metabolic changes. SIGNIFICANCE RAB12 negatively regulates osteogenic differentiation through the PCBP1/GLUT1 axis, affecting glucose metabolism levels in the bone microenvironment. RAB12 may serve as a potential target for the treatment of osteoporosis and postmenopausal metabolic dysregulation.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Guozhen Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Qian Cao
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China; Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China; Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China.
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, PR China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China.
| |
Collapse
|
4
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025; 21:375-390. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Brejchova K, Rahm M, Benova A, Domanska V, Reyes-Gutierez P, Dzubanova M, Trubacova R, Vondrackova M, Cajka T, Tencerova M, Vrabel M, Kuda O. Uncovering mechanisms of thiazolidinediones on osteogenesis and adipogenesis using spatial fluxomics. Metabolism 2025; 166:156157. [PMID: 39947516 DOI: 10.1016/j.metabol.2025.156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Insulin-sensitizing drugs, despite their broad use against type 2 diabetes, can adversely affect bone health, and the mechanisms underlying these side effects remain largely unclear. Here, we investigated the different metabolic effects of a series of thiazolidinediones, including rosiglitazone, pioglitazone, and the second-generation compound MSDC-0602K, on human mesenchymal stem cells (MSCs). METHODS We developed 13C subcellular metabolomic tracer analysis measuring separate mitochondrial and cytosolic metabolite pools, lipidomic network-based isotopologue models, and bioorthogonal click chemistry, to demonstrate that MSDC-0602K differentially affected bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AT-MSCs). In BM-MSCs, MSDC-0602K promoted osteoblastic differentiation and suppressed adipogenesis. This effect was clearly distinct from that of the earlier drugs and that on AT-MSCs. RESULTS Fluxomic data reveal unexpected differences between this drug's effect on MSCs and provide mechanistic insight into the pharmacologic inhibition of mitochondrial pyruvate carrier 1 (MPC). Our study demonstrates that MSDC-0602K retains the capacity to inhibit MPC, akin to rosiglitazone but unlike pioglitazone, enabling the utilization of alternative metabolic pathways. Notably, MSDC-0602K exhibits a limited lipogenic potential compared to both rosiglitazone and pioglitazone, each of which employs a distinct lipogenic strategy. CONCLUSIONS These findings indicate that the new-generation drugs do not compromise bone structure, offering a safer alternative for treating insulin resistance. Moreover, these results highlight the ability of cell compartment-specific metabolite labeling by click reactions and tracer metabolomics analysis of complex lipids to discover molecular mechanisms within the intersection of carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michal Rahm
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Paul Reyes-Gutierez
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia; Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Radka Trubacova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michaela Vondrackova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Milan Vrabel
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia.
| |
Collapse
|
6
|
Yoon H, Park SG, Shin HR, Kim KT, Cho YD, Moon JI, Kim WJ, Ryoo HM. Unraveling the dynamics of osteoblast differentiation in MC3T3-E1 cells: Transcriptomic insights into matrix mineralization and cell proliferation. Bone 2025; 194:117442. [PMID: 40032015 DOI: 10.1016/j.bone.2025.117442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Unraveling the intricacies of osteoblast differentiation is crucial for advancing our comprehension of bone biology. This study investigated the complicated molecular events orchestrating osteoblast differentiation in MC3T3-E1 cells, a well-established in vitro culture model. Employing longitudinal RNA-sequencing analysis, we explored transcriptomic changes at the pivotal time points of 0, 1, 4, 7, 10, 14, and 21 days and categorized osteogenic differentiation into proliferation, matrix maturation, and mineralization stages. Notably, we observed a simultaneous increase in matrix mineralization and cell proliferation during the mineralization stage, accompanied by a positive correlation between proliferation-associated genes and those enriched in ossification. Additionally, we identified the presence of proliferating cells over the mineralizing matrix layers. These results could serve as a model for understanding the principles by which bone lining cells are formed on the calcified bone matrix and the mechanism by which new osteoblasts are recruited during the bone remodeling process.
Collapse
Affiliation(s)
- Heein Yoon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul 03080, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Henry ÓC, O'Neill LAJ. Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. Eur J Immunol 2025; 55:e202451381. [PMID: 40170391 PMCID: PMC11962241 DOI: 10.1002/eji.202451381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Metabolic reprogramming of stromal cells, including fibroblast-like synoviocytes (FLS) and chondrocytes, as well as osteoclasts (OCs), are involved in the inflammatory and degenerative processes underlying rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, FLS exhibit mTOR activation, enhanced glycolysis and reduced oxidative phosphorylation, fuelling inflammation, angiogenesis, and cartilage degradation. In OA, chondrocytes undergo metabolic rewiring, characterised by mTOR and NF-κB activation, mitochondrial dysfunction, and increased glycolysis, which promotes matrix metalloproteinase production, extracellular matrix (ECM) degradation, and angiogenesis. Macrophage-derived immunometabolites, including succinate and itaconate further modulate stromal cell function, acting as signalling molecules that modulate inflammatory and catabolic processes. Succinate promotes inflammation whilst itaconate is anti-inflammatory, suppressing inflammatory joint disease in models. Itaconate deficiency also correlates inversely with disease severity in RA in humans. Emerging evidence highlights the potential of targeting metabolic processes as promising therapeutic strategies for connective tissue disorders.
Collapse
Affiliation(s)
- Órlaith C. Henry
- Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | | |
Collapse
|
8
|
Zhang H, Zhao R, Wang X, Qi Y, Sandai D, Wang W, Song Z, Liang Q. Interruption of mitochondrial symbiosis is associated with the development of osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1488489. [PMID: 39963284 PMCID: PMC11830588 DOI: 10.3389/fendo.2025.1488489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondria maintain bacterial traits because of their endosymbiotic origins, yet the host cell recognizes them as non-threatening since the organelles are compartmentalized. Nevertheless, the controlled release of mitochondrial components into the cytoplasm can initiate cell death, activate innate immunity, and provoke inflammation. This selective interruption of endosymbiosis as early as 2 billion years ago allowed mitochondria to become intracellular signaling hubs. Recent studies have found that the interruption of mitochondrial symbiosis may be closely related to the occurrence of various diseases, especially osteoporosis (OP). OP is a systemic bone disease characterized by reduced bone mass, impaired bone microstructure, elevated bone fragility, and susceptibility to fracture. The interruption of intra-mitochondrial symbiosis affects the energy metabolism of bone cells, leads to the imbalance of bone formation and bone absorption, and promotes the occurrence of osteoporosis. In this paper, we reviewed the mechanism of mitochondrial intersymbiosis interruption in OP, discussed the relationship between mitochondrial intersymbiosis interruption and bone marrow mesenchymal stem cells, osteoblasts and osteoclasts, as well as the inheritance and adaptation in the evolutionary process, and prospected the future research direction to provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Haoling Zhang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuemei Wang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaqian Qi
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wei Wang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhijing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Lanzhou, China
| | - Qiudong Liang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
| |
Collapse
|
9
|
Chen XJ, Yang YY, Pan ZC, Xu JZ, Jiang T, Zhang LL, Zhu KC, Zhang D, Song JX, Sheng CX, Sun LH, Tao B, Liu JM, Zhao HY. The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes. iScience 2025; 28:111519. [PMID: 39758822 PMCID: PMC11699391 DOI: 10.1016/j.isci.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.
Collapse
Affiliation(s)
- Xiao-jing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-can Pan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-zun Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-lin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-cheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-xi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-xiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Song C, Sawall JK, Ji X, Song F, Liao X, Peng R, Ren H, Koyama E, Pacifici M, Long F. Tgfβ signaling stimulates glycolysis to promote the genesis of synovial joint interzone in developing mouse embryonic limbs. SCIENCE ADVANCES 2025; 11:eadq4991. [PMID: 39772668 PMCID: PMC11708888 DOI: 10.1126/sciadv.adq4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
The initial interzone cells for synovial joints originate from chondrocytes, but such critical transition is minimally understood. With single-cell RNA sequencing (scRNA-seq) of murine embryonic knee joint primordia, we discovered that heightened expression of glycolysis genes characterized developing interzone cells when compared to flanking chondrocytes. Conditional deletion of the glucose transporters Glut1 and/or Glut3, in either the incipient pre-skeletal mesenchyme with Prx1Cre or in chondrocytes with Col2Cre, disrupted interzone formation dose-dependently. In contrast, deletion of Glut1/3 in established interzone cells with Gdf5Cre did not have similar severe disruption of joint development. scRNA-seq revealed that Glut1/3 deletion by Prx1Cre impeded Tgfβ signaling in the developing interzone cells. Direct elimination of Tgfβ signaling with Prx1Cre partially phenocopied the deletion of Glut1/3 in impairing interzone formation. Tgfβ stimulated glycolysis in chondrocytes via activation of mTOR and Hif1α in vitro. The data support that the essential conversion of chondrocytes to interzone cells requires a transient elevation of glycolysis partly dependent on Tgfβ signaling.
Collapse
Affiliation(s)
- Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jasmin Koehnken Sawall
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Ren
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Casarrubios L, Cicuéndez M, Polo-Montalvo A, Feito MJ, Martínez-Del-Pozo Á, Arcos D, Duarte IF, Portolés MT. Metabolomic characterization of MC3T3-E1pre-osteoblast differentiation induced by ipriflavone-loaded mesoporous nanospheres. BIOMATERIALS ADVANCES 2025; 166:214085. [PMID: 39490191 DOI: 10.1016/j.bioadv.2024.214085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This study reports on the metabolic changes accompanying the differentiation of MC3T3-E1 osteoprogenitor cells induced by mesoporous bioactive glass nanospheres (nMBG) loaded with ipriflavone (nMBG-IP). Ipriflavone (IP) is a synthetic isoflavone known for inhibiting bone resorption, maintaining bone density, and preventing osteoporosis. Delivering IP intracellularly is a promising strategy to modulate bone remodeling at significantly lower doses compared to free drug administration. Our results demonstrate that nMBG are efficiently internalized by pre-osteoblasts and, when loaded with IP, induce their differentiation. This differentiation process is accompanied by pronounced metabolic alterations, as monitored by NMR analysis of medium supernatants and cell extracts (exo- and endo-metabolomics, respectively). The main effects include an early-stage intensification of glycolysis and changes in several metabolic pathways, such as nucleobase metabolism, osmoregulatory and antioxidant pathways, and lipid metabolism. Notably, the metabolic impacts of nMBG-IP and free IP were very similar, whereas nMBG alone induced only mild changes in the intracellular metabolic profile without affecting the cells' consumption/secretion patterns or lipid composition. This finding indicates that the observed effects are primarily related to IP-induced differentiation and that nMBG nanospheres serve as convenient carriers with both efficient internalization and minimal metabolic impact. Furthermore, the observed link between pre-osteoblast differentiation and metabolism underscores the potential of utilizing metabolites and metabolic reprogramming as strategies to modulate the osteogenic process, for instance, in the context of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Mónica Cicuéndez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Polo-Montalvo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain.
| |
Collapse
|
12
|
Catheline SE, Smith CO, McArthur M, Yu C, Brookes PS, Eliseev RA. Energy metabolism in osteoprogenitors and osteoblasts: Role of the pentose phosphate pathway. J Biol Chem 2025; 301:108016. [PMID: 39608710 PMCID: PMC11721538 DOI: 10.1016/j.jbc.2024.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OBs), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of 13C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.k.a. mesenchymal stem) cells and bone marrow stromal cell-derived OBs. Glucose tracing showed noncanonical direction of glucose metabolism with high labeling of early glycolytic steps and the pentose phosphate pathway (PPP) but very low labeling of late glycolytic steps and the Krebs cycle. Labeling of Krebs cycle and late steps of glycolysis was primarily from glutamine. These data suggest that in osteolineage cells, glucose is metabolized primarily via the PPP while glutamine is metabolized in the mitochondria, also feeding into the late steps of glycolysis likely via the malate-aspartate shuttle. This metabolic setup did not change after induction of differentiation. To evaluate the importance of this setup for osteolineage cells, we used the inhibitors of either PPP or malate-aspartate shuttle and observed a significant reduction in both cell growth and ability to differentiate. In sum, we observed a distinct metabolic wiring in osteolineage cells with high flux of glucose through the PPP and glutamine flux fueling both mitochondria and late steps of glycolysis. This wiring likely reflects their unique capacity to rapidly proliferate and produce extracellular matrix, e.g., after bone fracture.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Matthew McArthur
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Chen Yu
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
13
|
Liu C, Feng N, Wang Z, Zheng K, Xie Y, Wang H, Long H, Peng S. Foxk1 promotes bone formation through inducing aerobic glycolysis. Cell Death Differ 2024; 31:1650-1663. [PMID: 39232134 PMCID: PMC11618307 DOI: 10.1038/s41418-024-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Transcription factor Foxk1 can regulate cell proliferation, differentiation, metabolism, and promote skeletal muscle regeneration and cardiogenesis. However, the roles of Foxk1 in bone formation is unknown. Here, we found that Foxk1 expression decreased in the bone tissue of aged mice and osteoporosis patients. Knockdown of Foxk1 in primary murine calvarial osteoblasts suppressed osteoblast differentiation and proliferation. Conditional knockout of Foxk1 in preosteoblasts and mature osteoblasts in mice exhibited decreased bone mass and mechanical strength due to reduced bone formation. Mechanistically, we identified Foxk1 targeted the promoter region of many genes of glycolytic enzyme by CUT&Tag analysis. Lacking of Foxk1 in primary murine calvarial osteoblasts resulted in reducing aerobic glycolysis. Inhibition of glycolysis by 2DG hindered osteoblast differentiation and proliferation induced by Foxk1 overexpression. Finally, specific overexpression of Foxk1 in preosteoblasts, driven by a preosteoblast specific osterix promoter, increased bone mass and bone mechanical strength of aged mice, which could be suppressed by inhibiting glycolysis. In summary, these findings reveal that Foxk1 plays a vital role in the osteoblast metabolism regulation and bone formation stimulation, offering a promising approach for preventing age-related bone loss.
Collapse
Affiliation(s)
- Chungeng Liu
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Naibo Feng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhenmin Wang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Kangyan Zheng
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Yongheng Xie
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Hongyu Wang
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Houqing Long
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Songlin Peng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
15
|
Zhou P, Liu L, Lu K, Xu MZ, Ye YW, Li C, Yin Y. Association between triglycerides and lumbar bone mineral density in Chinese patients with osteoporotic fractures: a retrospective cross-sectional study. Sci Rep 2024; 14:29473. [PMID: 39604402 PMCID: PMC11603138 DOI: 10.1038/s41598-024-78926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The association between lumbar bone mineral density (BMD) and triglyceride (TG) levels has been extensively studied; however, the results remain controversial. Therefore, this research aimed to elucidate the association of TG levels with lumbar BMD in patients with osteoporotic fractures (OPFs) who have undergone surgery. This cross-sectional study analyzed 3,558 OPF patients (aged 50 years and above) who were admitted to the First People's Hospital of Kunshan and assessed their TG levels, lumbar BMD, and other variables. The outcome variable of this research was bone density, whereas the baseline glycerol trihydrate levels were considered as the exposure variable. An analysis adjustment was conducted for various covariates, including age, gender, body mass index (BMI), and other baseline laboratory and clinical results. Furthermore, the potential non-linear relationships were assessed via the smooth curve fitting, and threshold effect analyses. The mean age of 3,558 included OPF patients was 68.87 ± 10.55 years. In the fully adjusted multivariate regression analysis, a positive correlation was found between TG levels and lumbar BMD (β = 0.015, 95% CI: 0.001-0.028, p = 0.033). Furthermore, the threshold effect analysis revealed a curvilinear relationship between TG levels and lumbar BMD, with a turning point at 1.26 mmol/L. Moreover, on both sides of the turning point, different patterns were observed. On the left side, TG levels were positively correlated with lumbar BMD. However, despite higher TG levels, the differences in lumbar BMD on the right side of the turning point, were not statistically significant, indicating a lack of significant association (p = 0.712). In summary, this research indicated that in OPF patients, higher TG levels were significantly positively associated with lumbar BMD. Furthermore, there was a threshold value of 1.26 mmol/L, indicating that TG levels in OPF patients with concomitant hypertriglyceridemia should be maintained within the normal range, and reducing TG levels below 1.26 mmol/L requires continuous monitoring. This approach effectively controls TG levels without adversely impacting lumbar BMD.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Lei Liu
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-Zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yao-Wei Ye
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China.
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China.
- Department of Orthopedics, The First People's Hospital of Kunshan, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China.
| | - Yi Yin
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China.
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China.
- Department of Orthopedics, The First People's Hospital of Kunshan, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
16
|
Song F, Marmo T, Song C, Liao X, Long F. Wnt7b overexpression in osteoblasts stimulates bone formation and reduces obesity in mice on a high-fat diet. JBMR Plus 2024; 8:ziae122. [PMID: 39434845 PMCID: PMC11491285 DOI: 10.1093/jbmrpl/ziae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Previous studies have shown that Wnt7b potently stimulates bone formation by promoting osteoblast differentiation and activity. As high-fat feeding leads to obesity and systemic metabolic dysregulation, here we investigate the potential benefit of Wnt7b overexpression in osteoblasts on both bone and whole-body metabolism in mice fed with a high-fat diet (HFD). Wnt7b overexpression elicited massive overgrowth of trabecular and cortical bone but seemed to ameliorate body fat accumulation in mice with prolonged HFD feeding. In addition, Wnt7b overexpression modestly improved glucose tolerance in male mice on HFD. Collectively, the results indicate that targeted overexpression of Wnt7b in osteoblasts not only stimulates bone formation but also improves certain aspects of global metabolism in overnourished mice.
Collapse
Affiliation(s)
- Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| |
Collapse
|
17
|
Armutcu F, McCloskey E. Insulin resistance, bone health, and fracture risk. Osteoporos Int 2024; 35:1909-1917. [PMID: 39264439 DOI: 10.1007/s00198-024-07227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Insulin resistance, defined as an impaired biological response to insulin stimulation in target tissues, arises most frequently in the presence of central obesity. Although obesity is generally associated with increased bone mass, recent data challenge this view and, if complicated by T2DM, obese patients are at high risk for fragility fractures. IR may play a key role in this increased fracture risk through effects on bone quality rather than bone quantity. Further understanding of the mechanisms and approaches to prevent osteoporotic fractures in IR-related diseases is needed. CLINICAL RELEVANCE The dramatic increase in obesity and metabolic syndrome (MetS) over the last half-century has led to a worldwide epidemic of type 2 diabetes mellitus (T2DM) as well as in the incidence of insulin resistance (IR). IR is defined as an impaired biological response to insulin stimulation in target tissues and is primarily related to the liver, muscle, and adipose tissue. The most frequent underlying cause is central obesity, and it is known that excess abdominal adipose tissue secretes increased amounts of free fatty acids, which directly affects insulin signalling, reduces glucose uptake in muscle, and triggers excessive triglyceride synthesis and gluconeogenesis in the liver. When pancreatic β cells are unable to secrete the higher levels of insulin needed, T2DM, the main complication of IR, occurs. OBSERVATIONS Although obesity is generally associated with increased bone mass, recent data challenge this view and highlight the multifaceted nature of the obesity-bone relationship. Patients with T2DM are at significant risk for well-known complications of diabetes, including retinopathy, nephropathy, macrovascular disease, and neuropathy, but it is clear that they are also at high risk for fragility fractures. Moreover, recent data provide strong evidence that IR may key role in the increased fracture risk observed in both obesity and T2DM. CONCLUSIONS In this concise review article, the role of IR in increased risk of osteoporotic fractures in MetS, obesity, and T2DM is discussed and summarised, including consideration of the need for fracture risk assessment as a 'preventive measure', especially in patients with T2DM and chronic MetS with abdominal obesity. Personalised and targeted diagnostic and therapeutic approaches to prevent osteoporotic fractures in IR-related diseases are needed and could make significant contributions to health outcomes.
Collapse
Affiliation(s)
- Ferah Armutcu
- Sanctuary International Visitor Support Scheme, Sheffield, UK.
- Division of Clinical Medicine, School of Medicine and Population Health, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK.
| | - Eugene McCloskey
- Division of Clinical Medicine, School of Medicine and Population Health, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Centre for Integrated Research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Kieler M, Prammer LS, Heller G, Hofmann M, Sperger S, Hanetseder D, Niederreiter B, Komljenovic A, Klavins K, Köcher T, Brunner JS, Stanic I, Oberbichler L, Korosec A, Vogel A, Kerndl M, Hromadová D, Musiejovsky L, Hajto A, Dobrijevic A, Piwonka T, Haschemi A, Miller A, Georgel P, Marolt Presen D, Grillari J, Hayer S, Auger JP, Krönke G, Sharif O, Aletaha D, Schabbauer G, Blüml S. Itaconate is a metabolic regulator of bone formation in homeostasis and arthritis. Ann Rheum Dis 2024; 83:1465-1479. [PMID: 38986577 PMCID: PMC11503170 DOI: 10.1136/ard-2023-224898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.
Collapse
Affiliation(s)
- Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Leona Sophia Prammer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Department of Rheumatology, Medical University of Vienna, Wien, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Birgit Niederreiter
- Department of Rheumatology, Medical University of Vienna, Wien, Vienna, Austria
| | - Andrea Komljenovic
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Kristaps Klavins
- Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Campus-Vienna-BioCenter 1, Vienna, Austria
| | - Julia Stefanie Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Irena Stanic
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Laura Oberbichler
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ana Korosec
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Martina Kerndl
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Dominika Hromadová
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Laszlo Musiejovsky
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Anja Dobrijevic
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Tina Piwonka
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Anne Miller
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1 Place de l’Hôpital, Strasbourg Cedex, France
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Silvia Hayer
- Department of Rheumatology, Medical University of Vienna, Wien, Vienna, Austria
| | - Jean-Philippe Auger
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Wien, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Wien, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Stephan Blüml
- Department of Rheumatology, Medical University of Vienna, Wien, Vienna, Austria
| |
Collapse
|
19
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Wang P, Zhou W, Chen F, Zhang X, Zhang Q, Chen Y, Zhang N. METTL14-mediated methylation of SLC25A3 mitigates mitochondrial damage in osteoblasts, leading to the improvement of osteoporosis. Exp Gerontol 2024; 194:112496. [PMID: 38897394 DOI: 10.1016/j.exger.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Osteoporosis is linked to impaired function of osteoblasts, and decreased expression of METTL14 may result in abnormal differentiation of these bone-forming cells. However, the specific impact of METTL14 on osteoblast differentiation and its underlying mechanisms are not yet fully understood. METHODS AND RESULTS This study discovered a positive correlation between METTL14 expression and bone formation in specimens from osteoporosis patients and ovariectomized (OVX) mice. Additionally, METTL14 targeting of SLC25A3 contributed to the restoration of mitochondrial ROS levels and mitochondrial membrane potential in osteoblasts and promoted osteoblast differentiation. Moreover, in vivo experiments showed that METTL14 enhanced bone formation, and therapeutic introduction of METTL14 countered the decrease in bone formation in OVX mice. CONCLUSIONS Overall, these findings emphasize the crucial role of the METTL14/SLC25A3 signaling axis in osteoblast activity, suggesting that this axis could be a potential target for improving osteoporosis.
Collapse
Affiliation(s)
- Ping Wang
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China; Anhui No.2 Provincial People's Hospital, Department of Endocrinology, Hefei, Anhui 230000, China
| | - Weifeng Zhou
- Anhui Medical College, Department of Clinical Medicine, Hefei, Anhui 230000, China
| | - Fuhua Chen
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China
| | - Xiaoping Zhang
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China.
| | - Yiqing Chen
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China.
| | - Nan Zhang
- The First Affiliated Hospital of Anhui Medical University, Department of Endocrinology, Hefei, Anhui 230000, China.
| |
Collapse
|
22
|
Khan MP, Sabini E, Beigel K, Lanzolla G, Laslow B, Wang D, Merceron C, Giaccia A, Long F, Taylor D, Schipani E. HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation. JCI Insight 2024; 9:e182330. [PMID: 39088272 PMCID: PMC11457864 DOI: 10.1172/jci.insight.182330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.
Collapse
Affiliation(s)
- Mohd P. Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brittany Laslow
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dian Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amato Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Fanxin Long
- Department of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Zhou M, An YZ, Guo Q, Zhou HY, Luo XH. Energy homeostasis in the bone. Trends Endocrinol Metab 2024; 35:439-451. [PMID: 38242815 DOI: 10.1016/j.tem.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.
Collapse
Affiliation(s)
- Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| |
Collapse
|
25
|
Na J, Yang Z, Shi Q, Li C, Liu Y, Song Y, Li X, Zheng L, Fan Y. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater 2024; 35:549-563. [PMID: 38434800 PMCID: PMC10909577 DOI: 10.1016/j.bioactmat.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024] Open
Abstract
The biophysical factors of biomaterials such as their stiffness regulate stem cell differentiation. Energy metabolism has been revealed an essential role in stem cell lineage commitment. However, whether and how extracellular matrix (ECM) stiffness regulates energy metabolism to determine stem cell differentiation is less known. Here, the study reveals that stiff ECM promotes glycolysis, oxidative phosphorylation, and enhances antioxidant defense system during osteogenic differentiation in MSCs. Stiff ECM increases mitochondrial fusion by enhancing mitofusin 1 and 2 expression and inhibiting the dynamin-related protein 1 activity, which contributes to osteogenesis. Yes-associated protein (YAP) impacts glycolysis, glutamine metabolism, mitochondrial dynamics, and mitochondrial biosynthesis to regulate stiffness-mediated osteogenic differentiation. Furthermore, glycolysis in turn regulates YAP activity through the cytoskeletal tension-mediated deformation of nuclei. Overall, our findings suggest that YAP is an important mechanotransducer to integrate ECM mechanical cues and energy metabolic signaling to affect the fate of MSCs. This offers valuable guidance to improve the scaffold design for bone tissue engineering constructs.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chiyu Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yaxin Song
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyang Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
26
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
27
|
Heberle A, Cappuccio E, Andric A, Kuen T, Simonini A, Weiss AKH. Mitochondrial enzyme FAHD1 reduces ROS in osteosarcoma. Sci Rep 2024; 14:9231. [PMID: 38649439 PMCID: PMC11035622 DOI: 10.1038/s41598-024-60012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.
Collapse
Affiliation(s)
- Anne Heberle
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Elia Cappuccio
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Kuen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Anna Simonini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
28
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
29
|
Li X, Liang T, Dai B, Chang L, Zhang Y, Hu S, Guo J, Xu S, Zheng L, Yao H, Lian H, Nie Y, Li Y, He X, Yao Z, Tong W, Wang X, Chow DHK, Xu J, Qin L. Excess glucocorticoids inhibit murine bone turnover via modulating the immunometabolism of the skeletal microenvironment. J Clin Invest 2024; 134:e166795. [PMID: 38512413 DOI: 10.1172/jci166795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Yuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hong Lian
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, and
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xinluan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| |
Collapse
|
30
|
Xu M, Wang D, Li K, Ma T, Wang Y, Xia B. TMEM119 (c.G143A, p.S48L) Mutation Is Involved in Primary Failure of Eruption by Attenuating Glycolysis-Mediated Osteogenesis. Int J Mol Sci 2024; 25:2821. [PMID: 38474068 DOI: 10.3390/ijms25052821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.
Collapse
Affiliation(s)
- Mindi Xu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Kefan Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Tianyu Ma
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| |
Collapse
|
31
|
Huang M, Liao X, Wang X, Qian Y, Zhang W, Chen G, Wu Q. POZ/BTB and AT hook containing zinc finger 1 (PATZ1) suppresses differentiation and regulates metabolism in human embryonic stem cells. Int J Biol Sci 2024; 20:1142-1159. [PMID: 38385086 PMCID: PMC10878140 DOI: 10.7150/ijbs.83927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024] Open
Abstract
Human embryonic stem cells (hESCs) can proliferate infinitely (self-renewal) and give rise to almost all types of somatic cells (pluripotency). Hence, understanding the molecular mechanism of pluripotency regulation is important for applications of hESCs in regenerative medicine. Here we report that PATZ1 is a key factor that regulates pluripotency and metabolism in hESCs. We found that depletion of PATZ1 is associated with rapid downregulation of master pluripotency genes and prominent deceleration of cell growth. We also revealed that PATZ1 regulates hESC pluripotency though binding the regulatory regions of OCT4 and NANOG. In addition, we demonstrated PATZ1 is a key node in the OCT4/NANOG transcriptional network. We further revealed that PATZ1 is essential for cell growth in hESCs. Importantly, we discovered that depletion of PATZ1 drives hESCs to exploit glycolysis which energetically compensates for the mitochondrial dysfunction. Overall, our study establishes the fundamental role of PATZ1 in regulating pluripotency in hESCs. Moreover, PATZ1 is essential for maintaining a steady metabolic homeostasis to refine the stemness of hESCs.
Collapse
Affiliation(s)
- Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR 999078, China
| | - Xiaohua Liao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR 999078, China
| | - Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yiwei Qian
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR 999078, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Guokai Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR 999078, China
- The Precision Regenerative Medicine Research Centre, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| |
Collapse
|
32
|
Deng Y, Xiao J, Ma L, Wang C, Wang X, Huang X, Cao Z. Mitochondrial Dysfunction in Periodontitis and Associated Systemic Diseases: Implications for Pathomechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:1024. [PMID: 38256098 PMCID: PMC10816612 DOI: 10.3390/ijms25021024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Periodontitis is a chronic infectious disorder damaging periodontal tissues, including the gingiva, periodontal ligament, cementum, and alveolar bone. It arises from the complex interplay between pathogenic oral bacteria and host immune response. Contrary to the previous view of "energy factories", mitochondria have recently been recognized as semi-autonomous organelles that fine-tune cell survival, death, metabolism, and other functions. Under physiological conditions, periodontal tissue cells participate in dynamic processes, including differentiation, mineralization, and regeneration. These fundamental activities depend on properly functioning mitochondria, which play a crucial role through bioenergetics, dynamics, mitophagy, and quality control. However, during the initiation and progression of periodontitis, mitochondrial quality control is compromised due to a range of challenges, such as bacterial-host interactions, inflammation, and oxidative stress. Currently, mounting evidence suggests that mitochondria dysfunction serves as a common pathological mechanism linking periodontitis with systemic conditions like type II diabetes, obesity, and cardiovascular diseases. Therefore, targeting mitochondria to intervene in periodontitis and multiple associated systemic diseases holds great therapeutic potential. This review provides advanced insights into the interplay between mitochondria, periodontitis, and associated systemic diseases. Moreover, we emphasize the significance of diverse therapeutic modulators and signaling pathways that regulate mitochondrial function in periodontal and systemic cells.
Collapse
Affiliation(s)
- Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
33
|
Chiang CH, Lin YH, Kao YC, Weng SC, Chen CM, Liou YM. Mechanistic study of the Aldo-keto reductase family 1 member A1 in regulating mesenchymal stem cell fate decision toward adipogenesis and osteogenesis. Life Sci 2024; 336:122336. [PMID: 38092142 DOI: 10.1016/j.lfs.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
AIMS Akr1A1 is a glycolytic enzyme catalyzing the reduction of aldehyde to alcohol. This study aims to delineate the role of Akr1A1 in regulating the adipo-osteogenic lineage differentiation of mesenchymal stem cells (MSCs). MAIN METHODS MSCs derived from human bone marrow and Wharton Jelly together with gain- and loss-of-function analysis as well as supplementation with the S-Nitrosoglutathione reductase (GSNOR) inhibitor N6022 were used to study the function of Akr1A1 in controlling MSC lineage differentiation into osteoblasts and adipocytes. KEY FINDINGS Akr1A1 expression, PKM2 activity, and lactate production were found to be decreased in osteoblast-committed MSCs, but PGC-1α increased to induce mitochondrial oxidative phosphorylation. Increased Akr1A1 inhibited the SIRT1-dependent pathway for decreasing the expressions of PGC-1α and TAZ but increasing PPAR γ in adipocyte-committed MSCs, hence promoting glycolysis in adipogenesis. In contrast, Akr1A1 expression, PKM2 activity and lactate production were all increased in adipocyte-differentiated cells with decreased PGC-1α for switching energy utilization to glycolytic metabolism. Reduced Akr1A1 expression in osteoblast-committed cells relieves its inhibition of SIRT1-mediated activation of PGC-1α and TAZ for facilitating osteogenesis and mitochondrial metabolism. SIGNIFICANCE Several metabolism-involved regulators including Akr1A1, SIRT1, PPARγ, PGC-1α and TAZ were differentially expressed in osteoblast- and adipocyte-committed MSCs. More importantly, Akr1A1 was identified as a new key regulator for controlling the MSC lineage commitment in favor of adipogenesis but detrimental to osteogenesis. Such information should be useful to develop perspective new therapeutic agents to reverse the adipo-osteogenic differentiation of BMSCs, in a way to increase in osteogenesis but decrease in adipogenesis.
Collapse
Affiliation(s)
- Chen Hao Chiang
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Hui Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Cuieh Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Chun Weng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Geriatrics and Gerontology, Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
34
|
DeMambro VE, Tian L, Karthik V, Rosen CJ, Guntur AR. Effects of PTH on osteoblast bioenergetics in response to glucose. Bone Rep 2023; 19:101705. [PMID: 37576927 PMCID: PMC10412867 DOI: 10.1016/j.bonr.2023.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Parathyroid hormone acts through its receptor, PTHR1, expressed on osteoblasts, to control bone remodeling. Metabolic flexibility for energy generation has been demonstrated in several cell types dependent on substrate availability. Recent studies have identified a critical role for PTH in regulating glucose, fatty acid and amino acid metabolism thus stimulating both glycolysis and oxidative phosphorylation. Therefore, we postulated that PTH stimulates increased energetic output by osteoblasts either by increasing glycolysis or oxidative phosphorylation depending on substrate availability. To test this hypothesis, undifferentiated and differentiated MC3T3E1C4 calvarial pre-osteoblasts were treated with PTH to study osteoblast bioenergetics in the presence of exogenous glucose. Significant increases in glycolysis with acute ∼1 h PTH treatment with minimal effects on oxidative phosphorylation in undifferentiated MC3T3E1C4 in the presence of exogenous glucose were observed. In differentiated cells, the increased glycolysis observed with acute PTH was completely blocked by pretreatment with a Glut1 inhibitor (BAY-876) resulting in a compensatory increase in oxidative phosphorylation. We then tested the effect of PTH on the function of complexes I and II of the mitochondrial electron transport chain in the absence of glycolysis. Utilizing a novel cell plasma membrane permeability mitochondrial (PMP) assay, in combination with complex I and II specific substrates, slight but significant increases in basal and maximal oxygen consumption rates with 24 h PTH treatment in undifferentiated MC3T3E1C4 cells were noted. Taken together, our data demonstrate for the first time that PTH stimulates both increases in glycolysis and the function of the electron transport chain, particularly complexes I and II, during high energy demands in osteoblasts.
Collapse
Affiliation(s)
- Victoria E. DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Li Tian
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Vivin Karthik
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Clifford J. Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anyonya R. Guntur
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
35
|
Wu M, Zhao Y, Tao M, Fu M, Wang Y, Liu Q, Lu Z, Guo J. Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50836-50853. [PMID: 37903387 DOI: 10.1021/acsami.3c09394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meihan Tao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
36
|
Ma S, Xing X, Huang H, Gao X, Xu X, Yang J, Liao C, Zhang X, Liu J, Tian W, Liao L. Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. Cell Metab 2023; 35:2028-2043.e7. [PMID: 37939660 DOI: 10.1016/j.cmet.2023.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.
Collapse
Affiliation(s)
- Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinglun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
37
|
Wang H, Peng Y, Huang X, Xiao J, Ma L, Liu H, Huang H, Yang Z, Wang C, Wang X, Cao Z. Glycometabolic reprogramming in cementoblasts: A vital target for enhancing cell mineralization. FASEB J 2023; 37:e23241. [PMID: 37847512 DOI: 10.1096/fj.202300870rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.
Collapse
Affiliation(s)
- Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Afzal AR, Jeon J, Jung CH. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli. Biochem Biophys Res Commun 2023; 678:144-147. [PMID: 37634412 DOI: 10.1016/j.bbrc.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
NAD-dependent malic enzymes catalyze NAD reduction to NADH while converting malate to pyruvate and CO2. In this study, NAD was reduced to NADH by MaeA, NAD-dependent malic enzyme from Escherichia coli, when fumarate was used as substrate. This suggested that MaeA catalyzed the conversion of fumarate to malate and then malate to pyruvate. The K0.5 value for fumarate was determined as 13 mM, different from previously characterized fumarases in Escherichia coli. Fumarate inhibited the malic enzyme activity of MaeA where NAD reduction to NADH was examined in the presence of malate as substrate. Human ME2, an NAD-dependent malic enzyme, also converted NAD to NADH in the presence of fumarate, suggesting that the duplex activity as fumarase and malic enzyme might be conserved in various NAD-dependent malic enzymes. MaeB, NADP-dependent malic enzyme from Escherichia coli, did not reduce NADP to NADPH in the presence of fumarate, suggesting the fumarase activities of MaeA and ME2 were specific.
Collapse
Affiliation(s)
- Aqeel Rana Afzal
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Jinyoung Jeon
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Che-Hun Jung
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea; Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
39
|
Ji X, Seeley R, Li K, Song F, Liao X, Song C, Angelozzi M, Valeri A, Marmo T, Lee WC, Shi Y, Long F. Genetic activation of glycolysis in osteoblasts preserves bone mass in type I diabetes. Cell Chem Biol 2023; 30:1053-1063.e5. [PMID: 37562406 PMCID: PMC10528964 DOI: 10.1016/j.chembiol.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Type I diabetes (T1D) impairs bone accrual in patients, but the mechanism is unclear. Here in a murine monogenic model for T1D, we demonstrate that diabetes suppresses bone formation resulting in a rapid loss of both cortical and trabecular bone. Single-cell RNA sequencing uncovers metabolic dysregulation in bone marrow osteogenic cells of diabetic mice. In vivo stable isotope tracing reveals impaired glycolysis in diabetic bone that is highly responsive to insulin stimulation. Remarkably, deletion of the insulin receptor reduces cortical but not trabecular bone. Increasing glucose uptake by overexpressing Glut1 in osteoblasts exacerbates bone defects in T1D mice. Conversely, activation of glycolysis by Pfkfb3 overexpression preserves both trabecular and cortical bone mass in the face of diabetes. The study identifies defective glucose metabolism in osteoblasts as a pathogenic mechanism for osteopenia in T1D, and furthermore implicates boosting osteoblast glycolysis as a potential bone anabolic therapy.
Collapse
Affiliation(s)
- Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ke Li
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Angelozzi
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arianna Valeri
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wen-Chih Lee
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yu Shi
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Hu G, Yu Y, Sharma D, Pruett-Miller SM, Ren Y, Zhang GF, Karner CM. Glutathione limits RUNX2 oxidation and degradation to regulate bone formation. JCI Insight 2023; 8:e166888. [PMID: 37432749 PMCID: PMC10543723 DOI: 10.1172/jci.insight.166888] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Reactive oxygen species (ROS) are natural products of mitochondrial oxidative metabolism and oxidative protein folding. ROS levels must be well controlled, since elevated ROS has been shown to have deleterious effects on osteoblasts. Moreover, excessive ROS is thought to underlie many of the skeletal phenotypes associated with aging and sex steroid deficiency in mice and humans. The mechanisms by which osteoblasts regulate ROS and how ROS inhibits osteoblasts are not well understood. Here, we demonstrate that de novo glutathione (GSH) biosynthesis is essential in neutralizing ROS and establish a proosteogenic reduction and oxidation reaction (REDOX) environment. Using a multifaceted approach, we demonstrate that reducing GSH biosynthesis led to acute degradation of RUNX2, impaired osteoblast differentiation, and reduced bone formation. Conversely, reducing ROS using catalase enhanced RUNX2 stability and promoted osteoblast differentiation and bone formation when GSH biosynthesis was limited. Highlighting the therapeutic implications of these findings, in utero antioxidant therapy stabilized RUNX2 and improved bone development in the Runx2+/- haplo-insufficient mouse model of human cleidocranial dysplasia. Thus, our data establish RUNX2 as a molecular sensor of the osteoblast REDOX environment and mechanistically clarify how ROS negatively impacts osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yinshi Ren
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, and
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Courtney M. Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Yang T, Dong Y, Wan J, Liu X, Liu Y, Huang J, Zhou J, Xiao H, Tang L, Wang Y, Wang S, Cai H. Sustained Release of BMSC-EVs from 3D Printing Gel/HA/nHAP Scaffolds for Promoting Bone Regeneration in Diabetic Rats. Adv Healthc Mater 2023; 12:e2203131. [PMID: 36854163 DOI: 10.1002/adhm.202203131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication, and the function of EVs mainly depends on the state of source cells. To determine the effect of diabetic microenvironment on EVs secreted by bone marrow mesenchymal stem cells (BMSCs), this work explores the effect of normal glucose (5.5 mm) cultured BMSCs derived EVs (NG-EVs) and high glucose (30 mm) cultured BMSCs derived EVs (HG-EVs) in regulating the migration, proliferation and osteoblastic differentiation of BMSCs in vitro. In order to improve the bioavailability of EVs, this work constructs a sustained release system of polydopamine (PDA) functionalized 3D printing gelatin/hyaluronic acid/nano-hydroxyapatite (Gel/HA/nHAP) scaffolds (S/PDA) and verifies its function in the calvarial defect model of diabetic rats. This work confirms that both NG-EVs and HG-EVs can promote proliferation and migration, inhibit apoptosis and promote osteogenic differentiation, but the function of HG-EVs is weaker than that of NG-EVs. Therefore, EVs secreted by autologous cells of diabetic patients are not suitable for self-repair. This work hopes that the 3D printing scaffold designed for sustained-release EVs will provide a new strategy for acellular tissue engineering bone repair in diabetic patients.
Collapse
Affiliation(s)
- Tingting Yang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Hui Xiao
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Lizong Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yanying Wang
- Department of Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, P. R. China
| |
Collapse
|
42
|
Li W, Kou J, Zhang Z, Li H, Li L, Du W. Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis. Proc Natl Acad Sci U S A 2023; 120:e2217869120. [PMID: 37253016 PMCID: PMC10266009 DOI: 10.1073/pnas.2217869120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| | - Junjie Kou
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| | - Haoyue Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| | - Li Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College100005, Beijing, China
| |
Collapse
|
43
|
Hsieh JY, Chen KC, Wang CH, Liu GY, Ye JA, Chou YT, Lin YC, Lyu CJ, Chang RY, Liu YL, Li YH, Lee MR, Ho MC, Hung HC. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol 2023; 6:548. [PMID: 37217557 DOI: 10.1038/s42003-023-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Kun-Chi Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC
| | - Guang-Yaw Liu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Jie-An Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Yu-Tung Chou
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Chun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Cheng-Jhe Lyu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Rui-Ying Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yen-Hsien Li
- Instrument Center, Office of Research and Development, National Chung Hsing University, Taichung, 40227, Taiwan ROC
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Mau-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan ROC.
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan ROC.
| |
Collapse
|
44
|
Menale C, Trinchese G, Aiello I, Scalia G, Dentice M, Mollica MP, Yoon NA, Diano S. Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function. Nutrients 2023; 15:2222. [PMID: 37432387 DOI: 10.3390/nu15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. METHODS MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. RESULTS The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. CONCLUSIONS Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.
Collapse
Affiliation(s)
- Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Immacolata Aiello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giulia Scalia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", 80138 Naples, Italy
| | - Nal Ae Yoon
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
45
|
Song F, Lee WD, Marmo T, Ji X, Song C, Liao X, Seeley R, Yao L, Liu H, Long F. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. eLife 2023; 12:e85714. [PMID: 37144869 PMCID: PMC10198725 DOI: 10.7554/elife.85714] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/06/2023] Open
Abstract
Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass is reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, osteoblast-specific overexpression of either Hif1a, a general inducer of glycolysis, or Pfkfb3 which stimulates a specific step in glycolysis, averts bone loss in T2D mice. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.
Collapse
Affiliation(s)
- Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Haoran Liu
- Department of Computer Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Deaprtment of Orthopedic Surgery, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
46
|
Nantakeeratipat T, Fujihara C, Nogimori T, Matsumoto M, Yamamoto T, Murakami S. Lysosomal acid lipase regulates bioenergetic process during the cytodifferentiation of human periodontal ligament cells. Biochem Biophys Res Commun 2023; 662:84-92. [PMID: 37099814 DOI: 10.1016/j.bbrc.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Lipid metabolism is one of energy metabolic pathways that produce adenosine triphosphate (ATP). In this pathway, lysosomal acid lipase (LAL) encoded by Lipase A (LIPA), plays an important role in catalyzing lipids to fatty acids (FAs), which drive oxidative phosphorylation (OXPHOS) and generate ATP. Previously, we found that a LIPA single nucleotide polymorphism rs143793106, which decreases the LAL activity, suppressed the cytodifferentiation of human periodontal ligament (HPDL) cells. However, the mechanisms underlying that suppression are still not fully clarified. Thus, we aimed to investigate the mechanisms regulating the cytodifferentiation of HPDL cells by LAL in terms of energy metabolism. We performed the osteogenic induction of HPDL cells with or without Lalistat-2, a LAL inhibitor. To visualize lipid droplet (LD) utilization, we performed confocal microscopy on HPDL cells. We also performed real-time PCR to analyze the gene expression of calcification-related and metabolism-related genes. Furthermore, we measured the ATP production rate from two major energy production pathways, OXPHOS and glycolysis, and OXPHOS-related parameters of HPDL cells during their cytodifferentiation. We found that LDs were utilized during the cytodifferentiation of HPDL cells. Alkaline phosphatase (ALPL), collagen type 1 alpha 1 chain (COL1A1), ATP synthase F1 subunit alpha (ATP5F1A), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expressions were upregulated, whereas lactate dehydrogenase A (LDHA) mRNA expression was downregulated. Additionally, total ATP production rate was significantly increased. In contrast, in the presence of Lalistat-2, LD utilization was inhibited and ALPL, COL1A1, and ATP5F1A mRNA expression was downregulated. Additionally, ATP production rate and spare respiratory capacity of the OXPHOS pathway were decreased in HPDL cells during their cytodifferentiation. Collectively, the defect of LAL in HPDL cells decreased LD utilization and OXPHOS capacity, resulting in reduced energy to sustain the adequate ATP production required for the cytodifferentiation of HPDL cells. Thus, LAL is important for periodontal tissue homeostasis as a regulator of bioenergetic process of HPDL cells.
Collapse
Affiliation(s)
- Teerachate Nantakeeratipat
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, 114 Soi Sukhumvit 23, Khlong Toei Nuea, Watthana, Bangkok, 10110, Thailand.
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
47
|
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA, Awad H, Eliseev RA. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging. J Bone Miner Res 2023; 38:522-540. [PMID: 36779737 PMCID: PMC10101909 DOI: 10.1002/jbmr.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Chen Yu
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Christine Massie
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester, Rochester, NY, USA
| | - Hani Awad
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
- Department of Pathology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
48
|
Deng X, Kato H, Taguchi Y, Nakata T, Umeda M. Intracellular glucose starvation inhibits osteogenic differentiation in human periodontal ligament cells. J Periodontal Res 2023; 58:607-620. [PMID: 36883427 DOI: 10.1111/jre.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Periodontal ligament cells (PDLCs), as mesenchymal cells in the oral cavity, are closely linked to periodontal tissue regeneration. However, the effect of local glucose deficiency on periodontal tissue regeneration, such as immediately post-surgery, remains unknown. OBJECTIVE In the present study, we investigated the effect of a low-glucose environment on the proliferation and osteogenic differentiation of PDLCs. MATERIALS AND METHODS We used media with five glucose concentrations (100, 75, 50, 25, and 0 mg/dL) and focused on the effects of a low-glucose environment on the proliferation, osteogenic differentiation, and autophagy of PDLCs. Additionally, we focused on changes in lactate production in a low-glucose environment and investigated the involvement of lactate with AZD3965, a monocarboxylate transporter-1 (MCT-1) inhibitor. RESULTS The low-glucose environment inhibited PDLCs proliferation, migration, and osteogenic differentiation, and induced the expression of the autophagy-related factors LC3 and p62. Lactate and ATP production were decreased under low-glucose conditions. The addition of AZD3965 (MCT-1 inhibitor) in normal glucose conditions caused a similar trend as in low-glucose conditions on PDLCs. CONCLUSION Our results suggest lactate production through glucose metabolism in the osteogenic differentiation of PDLCs. A low-glucose environment decreased lactate production, inhibiting cell proliferation, migration, and osteogenic differentiation and inducing autophagy in PDLCs.
Collapse
Affiliation(s)
- Xin Deng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Takaya Nakata
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
49
|
Zhang X, Sun J, Zhou M, Li C, Zhu Z, Gan X. The role of mitochondria in the peri-implant microenvironment. Exp Physiol 2023; 108:398-411. [PMID: 36648334 PMCID: PMC10103875 DOI: 10.1113/ep090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we consider the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and bone resorption during osseointegration. What advances does it highlight? Mitochondria contribute to the behaviours of peri-implant cell lines based on metabolic and reactive oxygen species signalling modulations, which will contribute to the research field and the development of new treatment strategies for improving implant success. ABSTRACT Osseointegration is a dynamic biological process in the local microenvironment adjacent to a bone implant, which is crucial for implant performance and success of the implant surgery. Recently, the role of mitochondria in the peri-implant microenvironment during osseointegration has gained much attention. Mitochondrial regulation has been verified to be essential for cellular events in osseointegration and as a therapeutic target for peri-implant diseases in the peri-implant microenvironment. In this review, we summarize our current knowledge of the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and resorption during osseointegration, which will contribute to the research field and the development of new treatment strategies to improve implant success. In addition, we indicate limitations in our current understanding of the regulation of mitochondria in osseointegration and suggest topics for further study.
Collapse
Affiliation(s)
- Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Min Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Chen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoli Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
50
|
Cai W, Zhang J, Yu Y, Ni Y, Wei Y, Cheng Y, Han L, Xiao L, Ma X, Wei H, Ji Y, Zhang Y. Mitochondrial Transfer Regulates Cell Fate Through Metabolic Remodeling in Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204871. [PMID: 36507570 PMCID: PMC9896036 DOI: 10.1002/advs.202204871] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Indexed: 05/13/2023]
Abstract
Mitochondria are the powerhouse of eukaryotic cells, which regulate cell metabolism and differentiation. Recently, mitochondrial transfer between cells has been shown to direct recipient cell fate. However, it is unclear whether mitochondria can translocate to stem cells and whether this transfer alters stem cell fate. Here, mesenchymal stem cell (MSC) regulation is examined by macrophages in the bone marrow environment. It is found that macrophages promote osteogenic differentiation of MSCs by delivering mitochondria to MSCs. However, under osteoporotic conditions, macrophages with altered phenotypes, and metabolic statuses release oxidatively damaged mitochondria. Increased mitochondrial transfer of M1-like macrophages to MSCs triggers a reactive oxygen species burst, which leads to metabolic remodeling. It is showed that abnormal metabolism in MSCs is caused by the abnormal succinate accumulation, which is a key factor in abnormal osteogenic differentiation. These results reveal that mitochondrial transfer from macrophages to MSCs allows metabolic crosstalk to regulate bone homeostasis. This mechanism identifies a potential target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wenjin Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yiqian Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yueqi Ni
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yihong Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Litian Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Leyi Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Xiaoxin Ma
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Hongjiang Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yaoting Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| |
Collapse
|