1
|
Wang Z, Tian Y, Fu T, Yang F, Li J, Yang L, Zhang W, Zheng W, Jiang X, Xu Z, You Y, Li X, Liu G, Xie Y, Yang Z, Qi D, Zhang Z. Coordinated regulation of cortical astrocyte maturation by OLIG1 and OLIG2 through BMP7 signaling modulation. J Genet Genomics 2025:S1673-8527(25)00081-5. [PMID: 40139307 DOI: 10.1016/j.jgg.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Astrocyte maturation is crucial for brain function, yet the mechanisms regulating this process remain poorly understood. In this study, we identify the bHLH transcription factors Olig1 and Olig2 as essential coordinators of cortical astrocyte maturation. We demonstrate that Olig1 and Olig2 work synergistically to regulate cortical astrocyte maturation by modulating Bmp7 expression. Genetic ablation of both Olig1 and Olig2 results in defective astrocyte morphology, including reduced process complexity and an immature gene expression profile. Single-cell RNA sequencing reveals a shift towards a less mature astrocyte state, marked by elevated levels of HOPX and GFAP, resembling human astrocytes. Mechanistically, Olig1 and Olig2 bind directly to the Bmp7 enhancer, repressing its expression to promote astrocyte maturation. Overexpression of Bmp7 in vivo replicates the astrocyte defects seen in Olig1/2 double mutants, confirming the critical role of BMP7 signaling in this process. These findings provide insights into the transcriptional and signaling pathways regulating astrocyte development and highlight Olig1 and Olig2 as key regulators of cortical astrocyte maturation, with potential implications for understanding glial dysfunction in neurological diseases.
Collapse
Affiliation(s)
- Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Tongye Fu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Feihong Yang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Li
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Wen Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Wenhui Zheng
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Xin Jiang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Guoping Liu
- Neurovascular Center, Changhai Hospital, Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai 200433, China
| | - Yunli Xie
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China.
| |
Collapse
|
2
|
Xu X, Fang M, Chen L, Huang H, Dai ZM, Yang J, Qiu M. Nzf2 promotes oligodendrocyte differentiation and regeneration via repressing HDAC1-mediated histone deacetylation. SCIENCE ADVANCES 2024; 10:eadf8405. [PMID: 39671488 PMCID: PMC11641009 DOI: 10.1126/sciadv.adf8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Proper axonal myelination and function of the vertebrate central nervous system rely largely on the timely differentiation of oligodendrocytes (OLs), yet key regulatory factors remain enigmatic. Our study reveals neural zinc finger (Nzf2) as a crucial orchestrator that controls the timing of OL differentiation both during development and myelin repair, contrasting with its previously suggested role in direct myelin gene regulation. Nzf2 ablation delays the onset of OL differentiation, while hyperactivation stimulates OL differentiation both during development and remyelination. Using RNA-seq and ChIP-seq, we pinpoint Nkx2.2 as a critical downstream target of Nzf2. Specific binding of Nzf2 in the Nkx2.2 gene locus inhibits histone deacetylation by disrupting the HDAC1 repressor complex and reducing deacetylase activity. Furthermore, Nzf2 overrides the inhibitory Notch signaling to initiate OL differentiation. Thus, we propose that the Notch-Nzf2-Nkx2.2 axis is a vital component of OL differentiation timing mechanism, suggesting Nzf2 as a potential therapeutic target for stimulating OL differentiation and boosting myelin repair in demyelinating diseases.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhong-Min Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. Neoplasia 2024; 57:101042. [PMID: 39216363 PMCID: PMC11402553 DOI: 10.1016/j.neo.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n) and those carrying only p53 deletion (p53n). In culture, the BB-p53n OPCs display growth characteristics more similar to glioma cells than p53n OPCs. When injected in mouse brains, BB-p53n OPC form tumors, while the p53n OPCs do not. Unbiased histone proteomics and transcriptomic analysis on these OPC populations identified higher levels of the histone H3K27me3 mark and lower levels of the histone H4K20me3. The transcriptome of the BB-p53n OPCs was characterized by higher levels of transcripts related to proliferation and cell adhesion compared to p53n OPCs. Pharmacological inhibition of the enzyme responsible for histone H3K27 trimethylation (EZH2i) in BB-p53n OPCs, reduced cell cycle transcripts and increased the expression of differentiation markers, but was not sufficient to restore their growth characteristics. This suggests that PDGF-BB overexpression in p53n OPCs favors the early stages of transformation, by promoting proliferation and halting differentiation in a H3K27me3-dependent pathway, and favoring growth characteristics in a H3K27me3 independent manner.
Collapse
Affiliation(s)
- Dennis Huang
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Belfer Research Institute, City University of New York & Weill Cornell Medical College, 413 E 69th St, New York, NY 10021, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States; Department of Biological Sciences, Hunter College, City University of New York, 695 Park Ave, New York, NY 10065, United States
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Natarajan V Bhanu
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Benjamin A Garcia
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Patrizia Casaccia
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States.
| |
Collapse
|
4
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Sperring CP, Cuervo Grajal H, Liu Z, Higgins DM, Amini M, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TT, Teasley D, Wu PB, Hai L, Karan C, Dowdy T, Razavilar A, Siegelin MD, Kitajewski J, Larion M, Bruce JN, Stockwell BR, Sims PA, Canoll P. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J 2024; 43:4492-4521. [PMID: 39192032 PMCID: PMC11480389 DOI: 10.1038/s44318-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
Collapse
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhouzerui Liu
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique Mo Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Misha Amini
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Damian Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | | | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Cui S, Chen T, Xin D, Chen F, Zhong X, Dong C, Chen X, Chen H, Zhou W, Lin Y, Lu QR. Zinc-Finger Protein ZFP488 Regulates the Timing of Oligodendrocyte Myelination and Remyelination. J Neurosci 2024; 44:e0141242024. [PMID: 39151953 PMCID: PMC11426379 DOI: 10.1523/jneurosci.0141-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Oligodendrocyte myelination and remyelination after injury are intricately regulated by various intrinsic and extrinsic factors, including transcriptional regulators. Among these, the zinc-finger protein ZFP488 is an oligodendrocyte-enriched transcriptional regulator that promotes oligodendrocyte differentiation in the developing neural tube and in oligodendroglial cell lines. However, the specific in vivo genetic requirements for ZFP488 during oligodendrocyte development and remyelination have not been defined. To address this gap, we generated a lineage-traceable ZFP488 knock-out mouse line, wherein an H2b-GFP reporter replaces the ZFP488-coding region. Using these mice of either sex, we examined the dynamics of ZFP488 expression from the endogenous promoter in the developing central nervous system (CNS). We observed a unique expression pattern in the oligodendrocyte lineage, with ZFP488 expression particularly enriched in differentiated oligodendrocytes. ZFP488 loss resulted in delayed myelination in the developing CNS and impaired remyelination after demyelinating injury in the brain. Integrated transcriptomic and genomic profiling further revealed that ZFP488 loss decreased the expression of myelination-associated genes but not oligodendrocyte progenitor-associated genes, suggesting that ZFP488 serves as a positive regulator of myelination by regulating maturation programs. Thus, our genetic loss-of-function study revealed that ZFP488 regulates a stage-dependent differentiation program that controls the timing of CNS myelination and remyelination.
Collapse
Affiliation(s)
- Siying Cui
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tong Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Dazhuan Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Fangbing Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chen Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Huiyao Chen
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
6
|
Ma W, Ge Q, Guan Y, Zhang L, Huang L, Chen L, Xu W, Meng J, Yang G, Liang C. Integrated analysis of histone modification features in clear cell renal cancer for risk stratification and therapeutic prediction. Transl Oncol 2024; 47:102042. [PMID: 38924847 PMCID: PMC11259817 DOI: 10.1016/j.tranon.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy that is involved in tumor genesis and development. However, few studies have focused on the predictive role of the global histone modification status in ccRCC. A total of 621 patients with complete transcript information and corresponding clinical profiles were obtained from TCGA-KIRC, GSE22541, and EMTAB3267 cohorts. A total of 122 histone modification relevant pathways were derived from MSigDB, and their activation status was quantified using GSVA. Differentially expressed genes (DEGs) were identified and filtrated using univariate Cox regression analysis. The signature was built relied on the least absolute shrinkage and selection operator (LASSO) regression analysis, and evaluated from survival difference, chemotherapy response, and activated pathways. A novel nomogram was established to quantify the probability of death in different patients. Seven risky and fifty-eight protective genes were used in LASSO analysis, and six genes were used to build the histone modification gene (HiMG) signature, which showed significant independent prognostic potential in all three cohorts. The nomogram showed acceptable incremental predictions. CKS2 (p = 0.004) and PD1 (p = 0.002) expression were significantly higher in grade 3 ccRCC than in grades 1-2. CKS2 siRNA in renal cancer cells caused reductions in cellular proliferation, migration, and invasion. Patients with low HiMG may be potential responders to rapamycin, erlotinib and FH535, while AZD6482 and CHIR-99,021 may be more suitable for patients with high HiMG levels. ccRCC histone modification distribution and a clinical signature for prognosis prediction, clinical decision making, and molecular mechanism exploration, were established for risk stratification and personalized treatments.
Collapse
Affiliation(s)
- Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Wenlong Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China.
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China.
| |
Collapse
|
7
|
Li D, Yang K, Li J, Xu X, Gong L, Yue S, Wei H, Yue Z, Wu Y, Yin S. Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord. J Neuroinflammation 2024; 21:213. [PMID: 39217340 PMCID: PMC11365210 DOI: 10.1186/s12974-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP), which results from injury or lesion of the somatosensory nervous system, is intimately associated with glial cells. The roles of microglia and astrocytes in NP have been broadly described, while studies on oligodendrocytes have largely focused on axonal myelination. The mechanisms of oligodendrocytes and their interactions with other glial cells in NP development remain uncertain. METHODS To explore the function of the interaction of the three glial cells and their interactions on myelin development in NP, we evaluated changes in NP and myelin morphology after a chronic constriction injury (CCI) model in mice, and used single-cell sequencing to reveal the subpopulations characteristics of oligodendrocytes, microglia, and astrocytes in the spinal cord tissues, as well as their relationship with myelin lesions; the proliferation and differentiation trajectories of oligodendrocyte subpopulations were also revealed using pseudotime cell trajectory and RNA velocity analysis. In addition, we identified chemokine ligand-receptor pairs between glial cells by cellular communication and verified them using immunofluorescence. RESULTS Our study showed that NP peaked on day 7 after CCI in mice, a time at which myelin lesions were present in both the spinal cord and sciatic nerve. Oligodendrocytes, microglia, and astrocytes subpopulations in spinal cord tissue were heterogeneous after CCI and all were involved in suppressing the process of immune defense and myelin production. In addition, the differentiation trajectory of oligodendrocytes involved a unidirectional lattice process of OPC-1-Oligo-9, which was arrested at the Oligo-2 stage under the influence of microglia and astrocytes. And the CADM1-CADM1, NRP1-VEGFA interactions between glial cells are enhanced after CCI and they had a key role in myelin lesions and demyelination. CONCLUSIONS Our study reveals the close relationship between the differentiation block of oligodendrocytes after CCI and their interaction with microglia and astrocytes-mediated myelin lesions and NP. CADM1/CADM1 and NRP-1/VEGFA may serve as potential therapeutic targets for use in the treatment of NP.
Collapse
Affiliation(s)
- Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kaihong Yang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Jinlu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lanlan Gong
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zhenyu Yue
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Yikun Wu
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Sen Yin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
9
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
10
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Bhunia MM, Stehn CM, Jubenville TA, Novacek EL, Larsson AT, Madala M, Suppiah S, Velez-Reyes GL, Williams KB, Sokolowski M, Williams RL, Finnerty SJ, Temiz NA, Caride A, Bhagwate AV, Nagaraj NK, Lee JH, Ordog T, Zadeh G, Largaespada DA. Multiomic analyses reveal new targets of polycomb repressor complex 2 in Schwann lineage cells and malignant peripheral nerve sheath tumors. Neurooncol Adv 2024; 6:vdae188. [PMID: 39620202 PMCID: PMC11606644 DOI: 10.1093/noajnl/vdae188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) can arise from atypical neurofibromas (ANF). Loss of the polycomb repressor complex 2 (PRC2) is a common event. Previous studies on PRC2-regulated genes in MPNST used genetic add-back experiments in highly aneuploid MPNST cell lines which may miss PRC2-regulated genes in NF1-mutant ANF-like precursor cells. A set of PRC2-regulated genes in human Schwann cells (SCs) has not been defined. We hypothesized that PRC2 loss has direct and indirect effects on gene expression resulting in MPNST, so we sought to identify PRC2-regulated genes in immortalized human Schwann cells (iHSCs). Methods We engineered NF1-deficient iHSCs with loss of function SUZ12 or EED mutations. RNA sequencing revealed 1327 differentially expressed genes to define PRC2-regulated genes. To investigate MPNST pathogenesis, we compared genes in iHSCs to consistent gene expression differences between ANF and MPNSTs. Chromatin immunoprecipitation sequencing was used to further define targets. Methylome and proteomic analyses were performed to further identify enriched pathways. Results We identified potential PRC2-regulated drivers of MPNST progression. Pathway analysis indicates many upregulated cancer-related pathways. We found transcriptional evidence for activated Notch and Sonic Hedgehog (SHH) signaling in PRC2-deficient iHSCs. Functional studies confirm that Notch signaling is active in MPNST cell lines, patient-derived xenografts, and transient cell models of PRC2 deficiency. A combination of MEK and γ-secretase inhibition shows synergy in MPNST cell lines. Conclusions We identified PRC2-regulated genes and potential drivers of MPNSTs. Our findings support the Notch pathway as a druggable target in MPNSTs. Our identification of PRC2-regulated genes and pathways could result in more novel therapeutic approaches.
Collapse
Affiliation(s)
- Minu M Bhunia
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher M Stehn
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ethan L Novacek
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahathi Madala
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suganth Suppiah
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Germán L Velez-Reyes
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Sokolowski
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel J Finnerty
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nuri A Temiz
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ariel Caride
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aditya V Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nagaswaroop K Nagaraj
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeong-Heon Lee
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Wang J, Ford JC, Mitra AK. Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer. BIOLOGY 2023; 12:1492. [PMID: 38132318 PMCID: PMC10740540 DOI: 10.3390/biology12121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.
Collapse
Affiliation(s)
- Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - James C. Ford
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
14
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
15
|
Wang H, Zhang P, Lu P, Cai X, Wang G, Xu X, Liu Y, Huang T, Li M, Qian T, Zhu H, Xue C. Neural tissue-engineered prevascularization in vivo enhances peripheral neuroregeneration via rapid vascular inosculation. Mater Today Bio 2023; 21:100718. [PMID: 37455820 PMCID: PMC10339252 DOI: 10.1016/j.mtbio.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Neural tissue engineering techniques typically face a significant challenge, simulating complex natural vascular systems that hinder the clinical application of tissue-engineered nerve grafts (TENGs). Here, we report a subcutaneously pre-vascularized TENG consisting of a vascular endothelial growth factor-induced host vascular network, chitosan nerve conduit, and inserted silk fibroin fibers. Contrast agent perfusion, tissue clearing, microCT scan, and blood vessel 3D reconstruction were carried out continuously to prove whether the regenerated blood vessels were functional. Moreover, histological and electrophysiological evaluations were also applied to investigate the efficacy of repairing peripheral nerve defects with pre-vascularized TENG. Rapid vascular inosculation of TENG pre-vascularized blood vessels with the host vascular system was observed at 4 d bridging the 10 mm sciatic nerve defect in rats. Transplantation of pre-vascularized TENG in vivo suppressed proliferation of vascular endothelial cells (VECs) while promoting their migration within 14 d post bridging surgery. More importantly, the early vascularization of TENG drives axonal regrowth by facilitating bidirectional migration of Schwann cells (SCs) and the bands of Büngner formation. This pre-vascularized TENG increased remyelination, promoted recovery of electrophysiological function, and prevented atrophy of the target muscles when observed 12 weeks post neural transplantation. The neural tissue-engineered pre-vascularization technique provides a potential approach to discover an individualized TENG and explore the innovative neural regenerative process.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Hui Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
16
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Grajal HC, Higgins DM, Sperring CP, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TTT, Wu PB, Hai L, Karan C, Razavilar A, Siegelin MD, Kitajewski J, Bruce JN, Stockwell BR, Sims PA, Canoll PD. A cell state specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529581. [PMID: 36865302 PMCID: PMC9980114 DOI: 10.1101/2023.02.22.529581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.
Collapse
Affiliation(s)
- Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Dominique M.O. Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F. Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B. Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Peter A. Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
19
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents. Nat Commun 2022; 13:1423. [PMID: 35301318 PMCID: PMC8931116 DOI: 10.1038/s41467-022-29068-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
OLIG2 is a transcription factor that activates the expression of myelin-associated genes in the oligodendrocyte-lineage cells. However, the mechanisms of myelin gene inactivation are unclear. Here, we uncover a non-canonical function of OLIG2 in transcriptional repression to modulate myelinogenesis by functionally interacting with tri-methyltransferase SETDB1. Immunoprecipitation and chromatin-immunoprecipitation assays show that OLIG2 recruits SETDB1 for H3K9me3 modification on the Sox11 gene, which leads to the inhibition of Sox11 expression during the differentiation of oligodendrocytes progenitor cells (OPCs) into immature oligodendrocytes (iOLs). Tissue-specific depletion of Setdb1 in mice results in the hypomyelination during development and remyelination defects in the injured rodents. Knockdown of Sox11 by siRNA in rat primary OPCs or depletion of Sox11 in the oligodendrocyte lineage in mice could rescue the hypomyelination phenotype caused by the loss of OLIG2. In summary, our work demonstrates that the OLIG2-SETDB1 complex can mediate transcriptional repression in OPCs, affecting myelination. Transcription factors regulate gene programs during myelination. Here, the authors show that the Oligodendrocyte Transcription Factor 2 (OLIG2) regulates the differentiation of oligodendrocyte progenitor cells into immature oligodendrocytes via SETDB1 during myelination and remyelination in rodents.
Collapse
|
21
|
Thulabandu V, Ferguson JW, Phung M, Atit RP. EZH2 modulates retinoic acid signaling to ensure myotube formation during development. FEBS Lett 2022; 596:1672-1685. [PMID: 35294045 DOI: 10.1002/1873-3468.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Sequential differentiation of pre-somitic progenitors into myocytes and subsequently into myotubes and myofibers is essential for the myogenic differentiation program (MDP) crucial for muscle development. Signaling factors involved in MDP are Polycomb Repressive Complex 2 (PRC2) targets in various developmental contexts. PRC2 is active in the developing myotomes during MDP, but how it regulates MDP is unclear. Here, we found that myocyte differentiation to myotubes requires Enhancer of Zeste 2 (EZH2), the catalytic component of PRC2. We observed elevated retinoic-acid (RA) signaling in the prospective myocytes in the Ezh2 mutants (E8.5-MusEzh2 ), and its inhibition can partially rescue the myocyte differentiation defect. Together, our data demonstrate a new role for PRC2-EZH2 during myocyte differentiation into myotubes by modulating RA signaling.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Melissa Phung
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Dermatology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| |
Collapse
|
22
|
Wang W, Cho H, Lee JW, Lee SK. The histone demethylase Kdm6b regulates subtype diversification of mouse spinal motor neurons during development. Nat Commun 2022; 13:958. [PMID: 35177643 PMCID: PMC8854633 DOI: 10.1038/s41467-022-28636-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
How a single neuronal population diversifies into subtypes with distinct synaptic targets is a fundamental topic in neuroscience whose underlying mechanisms are unclear. Here, we show that the histone H3-lysine 27 demethylase Kdm6b regulates the diversification of motor neurons to distinct subtypes innervating different muscle targets during spinal cord development. In mouse embryonic motor neurons, Kdm6b promotes the medial motor column (MMC) and hypaxial motor column (HMC) fates while inhibiting the lateral motor column (LMC) and preganglionic motor column (PGC) identities. Our single-cell RNA-sequencing analyses reveal the heterogeneity of PGC, LMC, and MMC motor neurons. Further, our single-cell RNA-sequencing data, combined with mouse model studies, demonstrates that Kdm6b acquires cell fate specificity together with the transcription factor complex Isl1-Lhx3. Our study provides mechanistic insight into the gene regulatory network regulating neuronal cell-type diversification and defines a regulatory role of Kdm6b in the generation of motor neuron subtypes in the mouse spinal cord.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Hyeyoung Cho
- Computational Biology Program, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jae W Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
23
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
24
|
Kim D, An H, Fan C, Park Y. Identifying oligodendrocyte enhancers governing Plp1 expression. Hum Mol Genet 2021; 30:2225-2239. [PMID: 34230963 PMCID: PMC8600034 DOI: 10.1093/hmg/ddab184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) produce myelin in the central nervous system (CNS), which accelerates the propagation of action potentials and supports axonal integrity. As a major component of CNS myelin, proteolipid protein 1 (Plp1) is indispensable for the axon-supportive function of myelin. Notably, this function requires the continuous high-level expression of Plp1 in OLs. Equally important is the controlled expression of Plp1, as illustrated by Pelizaeus-Merzbacher disease for which the most common cause is PLP1 overexpression. Despite a decade-long search, promoter-distal OL enhancers that govern Plp1 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Plp1, uncovering two OL enhancers for it (termed Plp1-E1 and Plp1-E2). Remarkably, clustered regularly interspaced short palindromic repeats (CRISPR) interference epigenome editing showed that Plp1-E1 and Plp1-E2 do not regulate two genes in their vicinity, highlighting their exquisite specificity to Plp1. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) data show that Plp1-E1 and Plp1-E2 are OL-specific enhancers that are conserved among human, mouse and rat. Hi-C data reveal that the physical interactions between Plp1-E1/2 and PLP1 are among the strongest in OLs and specific to OLs. We also show that Myrf, a master regulator of OL development, acts on Plp1-E1 and Plp1-E2 to promote Plp1 expression.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Hongjoo An
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Chuandong Fan
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
25
|
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 2021; 39:825-835. [PMID: 33846645 PMCID: PMC7611252 DOI: 10.1038/s41587-021-00869-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
In contrast to single-cell approaches for measuring gene expression and DNA accessibility, single-cell methods for analyzing histone modifications are limited by low sensitivity and throughput. Here, we combine the CUT&Tag technology, developed to measure bulk histone modifications, with droplet-based single-cell library preparation to produce high-quality single-cell data on chromatin modifications. We apply single-cell CUT&Tag (scCUT&Tag) to tens of thousands of cells of the mouse central nervous system and probe histone modifications characteristic of active promoters, enhancers and gene bodies (H3K4me3, H3K27ac and H3K36me3) and inactive regions (H3K27me3). These scCUT&Tag profiles were sufficient to determine cell identity and deconvolute regulatory principles such as promoter bivalency, spreading of H3K4me3 and promoter-enhancer connectivity. We also used scCUT&Tag to investigate the single-cell chromatin occupancy of transcription factor OLIG2 and the cohesin complex component RAD21. Our results indicate that analysis of histone modifications and transcription factor occupancy at single-cell resolution provides unique insights into epigenomic landscapes in the central nervous system.
Collapse
Affiliation(s)
- Marek Bartosovic
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden,Corresponding authors: ,
| | - Mukund Kabbe
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, 171 77 Stockholm, Sweden,Corresponding authors: ,
| |
Collapse
|