1
|
Bharti J, Gogu P, Pandey SK, Verma A, Yadav JP, Singh AK, Kumar P, Dwivedi AR, Pathak P. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp Cell Res 2025; 446:114440. [PMID: 39961465 DOI: 10.1016/j.yexcr.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
BRAF, a fundamental component of cellular signaling pathways regulating growth and survival, is frequently mutated in cancer development. Among entire BRAF mutations, the V600E substitution stands out as a dominant alteration in various malignancies, including melanoma, colorectal cancer, and thyroid cancer. Understanding the structural differences between wild-type BRAF and BRAFV600E is crucial for elucidating the molecular mechanisms underpinnings tumorigenesis and identifying dysregulation associated with the same. V600E mutation results in a constitutively active kinase domain, leading to dysregulated downstream signaling independent of extracellular stimuli. This sustained activation promotes cell proliferation, survival, angiogenesis, and hallmark features of the cancer cells. The study describes three distinct classes of BRAF mutations where Class 1 mutations predominantly involve point mutations within the BRAF gene, while Class 2 encompasses in-frame insertions and deletions, and Class 3 comprises gene fusions with large-scale chromosomal rearrangements. Further, we have discussed dysregulated pathways associated with mutation of BRAFV600E, which includes MAPK/ERK, PI3K/AKT/mTOR, TP53, DNA damage response, and WNT/β-Catenin from schematic representation. In the current review, we have shown how these dysregulated pathways play pivotal roles in tumorigenesis, tumor progression in BRAF-mutant cancers and highlighted the critical role of BRAF dysregulation in cancer development followed by its therapeutic implications of targeting dysregulated pathways in BRAF-driven malignancies.
Collapse
Affiliation(s)
- Jayhind Bharti
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | - Priyadharshini Gogu
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | | | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ashish Ranjan Dwivedi
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| | - Prateek Pathak
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| |
Collapse
|
2
|
Cheng Y, Han R, Wang M, Wang S, Zhou J, Wang J, Xu H. M 6A -mediated lncRNA SCIRT stability promotes NSCLC progression through binding to SFPQ and activating the PI3K/Akt pathway. Cell Mol Life Sci 2025; 82:63. [PMID: 39869159 PMCID: PMC11772919 DOI: 10.1007/s00018-025-05594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (m6A) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that m6A modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells. Functional analysis revealed that SCIRT enhanced NSCLC cell proliferation, migration, invasion, and epithelial‒mesenchymal transition. The m6A modification of SCIRT can be installed by METTL3, which enhanced the stability of this lncRNA. Notably, SCIRT overexpression in response to DNA double-strand breaks (DSBs) sensitized cells to camptothecin (CPT) and impairs DNA homologous recombination repair. SCIRT directly interacted with SFPQ in vitro and was primarily localized in the nucleus. Furthermore, ectopic SCIRT expression upregulated SFPQ and activated the PI3K/Akt pathway following CPT treatment, suggesting an unexpected role of SCIRT in facilitating SFPQ-mediated DSB repair. In brief, our findings highlight the oncogenic role of SCIRT in NSCLC by binding SFPQ and activating PI3K/Akt signaling, presenting a promising therapeutic target for personalized NSCLC treatment.
Collapse
Affiliation(s)
- Yongming Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Rong Han
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Meiqi Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Shuqing Wang
- Department of Clinical Laboratory, Harbin Fourth Hospital, 119 Jingyu Road, Harbin, 150001, China
| | - Junliang Zhou
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Jianyi Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Hui Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
| |
Collapse
|
3
|
Shen Y, Lin J, Jiang T, Shen X, Li Y, Fu Y, Xu P, Fang L, Chen Z, Huang H, Xia Y, Xu Z, Wang L. GC-derived exosomal circMAN1A2 promotes cancer progression and suppresses T-cell antitumour immunity by inhibiting FBXW11-mediated SFPQ degradation. J Exp Clin Cancer Res 2025; 44:24. [PMID: 39856764 PMCID: PMC11762487 DOI: 10.1186/s13046-025-03288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified. METHODS The exosomal circRNAs enriched in GC were identified using exosomal circRNA sequencing. The biological function of circMAN1A2 in GC was investigated using a series of in vitro and in vivo experiments. PKH-67 staining was used to label the exosomes. The molecular mechanism of exosomal circMAN1A2 was investigated via mass spectrometry, immunoprecipitation, Western blot, and single-cell RNA-sequencing data analyses. RESULTS In our study, we determined that circMAN1A2 (hsa_circ_0000118) was enriched in GC-derived exosomes. Higher circMAN1A2 expression was related to poor survival in GC patients (HR = 2.917, p = 0.0120). Exosomal circMAN1A2 promoted GC progression in vitro and in vivo and suppressed the antitumour activity of T cells. Moreover, circMAN1A2 bound to SFPQ in GC cells and T cells, promoting the G1/S phase transition of the cell cycle in GC cells while inhibiting the activation of the T cell receptor signalling pathway in T cells to decrease antitumour activity. Mechanistically, circMAN1A2 competed with FBXW11 for binding to SFPQ, preventing FBXW11-mediated k48-linked ubiquitination and SFPQ protein degradation, thereby stabilizing SFPQ expression. CONCLUSIONS Our work confirms the critical role of exosomal circMAN1A2 in the progression and immunosuppression of GC. This novel axis of circMAN1A2-SFPQ provides new insights into exosomal circRNA-based GC diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yikai Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xusheng Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwang Fu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongxin Huang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Cogan JA, Benova N, Kuklinkova R, Boyne JR, Anene CA. Meta-analysis of RNA interaction profiles of RNA-binding protein using the RBPInper tool. BIOINFORMATICS ADVANCES 2024; 4:vbae127. [PMID: 39233897 PMCID: PMC11374027 DOI: 10.1093/bioadv/vbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Motivation Recent RNA-centric experimental methods have significantly expanded our knowledge of proteins with known RNA-binding functions. However, the complete regulatory network and pathways for many of these RNA-binding proteins (RBPs) in different cellular contexts remain unknown. Although critical to understanding the role of RBPs in health and disease, experimentally mapping the RBP-RNA interactomes in every single context is an impossible task due the cost and manpower required. Additionally, identifying relevant RNAs bound by RBPs is challenging due to their diverse binding modes and function. Results To address these challenges, we developed RBP interaction mapper RBPInper an integrative framework that discovers global RBP interactome using statistical data fusion. Experiments on splicing factor proline and glutamine rich (SFPQ) datasets revealed cogent global SFPQ interactome. Several biological processes associated with this interactome were previously linked with SFPQ function. Furthermore, we conducted tests using independent dataset to assess the transferability of the SFPQ interactome to another context. The results demonstrated robust utility in generating interactomes that transfers to unseen cellular context. Overall, RBPInper is a fast and user-friendly method that enables a systems-level understanding of RBP functions by integrating multiple molecular datasets. The tool is designed with a focus on simplicity, minimal dependencies, and straightforward input requirements. This intentional design aims to empower everyday biologists, making it easy for them to incorporate the tool into their research. Availability and implementation The source code, documentation, and installation instructions as well as results for use case are freely available at https://github.com/AneneLab/RBPInper. A user can easily compile similar datasets for a target RBP.
Collapse
Affiliation(s)
- Joseph A Cogan
- School of Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natalia Benova
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - Rene Kuklinkova
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - James R Boyne
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - Chinedu A Anene
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
- Centre for Cancer Genomics and Computation Biology, Barts Cancer Institute, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
5
|
Yang L, Gilbertsen A, Jacobson B, Kratzke R, Henke CA. Serum Splicing Factor Proline- and Glutamine-Rich Is a Diagnostic Marker for Non-Small-Cell Lung Cancer and Other Solid Cancers. Int J Mol Sci 2024; 25:8766. [PMID: 39201453 PMCID: PMC11354699 DOI: 10.3390/ijms25168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer markers are measurable molecules in blood or tissues that are produced by tumor cells or immune cells in response to cancer progression. They play an important role in clinical diagnosis, prognosis, and therapy monitoring. Splicing factor proline- and glutamine-rich (SFPQ) plays an important role in cancer growth and metastasis. SFPQ is not only more highly expressed in non-small-cell lung cancer (NSCLC) cells than it is in controls, but also highly expressed in cancer cells in patients with other solid cancers. Thus, a new enzyme-linked immunosorbent assay (ELISA) for detecting SFPQ was developed, in which the SFPQ protein is trapped by the first specific mAb coated on a microplate, and then recognized by a second specific mAb. This assay allows for the specific detection of SFPQ in the serum of patients with solid cancer. Regarding NSCLC, the serum SFPQ levels distinguished the non-cancer controls from the patients with NSCLC, with an area under the curve of 0.876, a sensitivity of 87%, and a specificity of 94%. The serum SFPQ levels were significantly elevated in the patients with NSCLC or other solid cancers. In conclusion, serum SFPQ could be a promising novel diagnostic biomarker for NSCLC and other malignancies.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (R.K.)
| | - Robert Kratzke
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (R.K.)
| | - Craig A. Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (A.G.)
| |
Collapse
|
6
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 PMCID: PMC11283586 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongsheng Fang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Trifault B, Mamontova V, Cossa G, Ganskih S, Wei Y, Hofstetter J, Bhandare P, Baluapuri A, Nieto B, Solvie D, Ade CP, Gallant P, Wolf E, Larsen DH, Munschauer M, Burger K. Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts. Nucleic Acids Res 2024; 52:3050-3068. [PMID: 38224452 PMCID: PMC11014278 DOI: 10.1093/nar/gkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.
Collapse
Affiliation(s)
- Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sabina Ganskih
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Yuanjie Wei
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Mathias Munschauer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
8
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
9
|
Wu Q, Fu X, He X, Liu J, Li Y, Ou C. Experimental prognostic model integrating N6-methyladenosine-related programmed cell death genes in colorectal cancer. iScience 2024; 27:108720. [PMID: 38299031 PMCID: PMC10829884 DOI: 10.1016/j.isci.2023.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Colorectal cancer (CRC) intricacies, involving dysregulated cellular processes and programmed cell death (PCD), are explored in the context of N6-methyladenosine (m6A) RNA modification. Utilizing the TCGA-COADREAD/CRC cohort, 854 m6A-related PCD genes are identified, forming the basis for a robust 10-gene risk model (CDRS) established through LASSO Cox regression. qPCR experiments using CRC cell lines and fresh tissues was performed for validation. The CDRS served as an independent risk factor for CRC and showed significant associations with clinical features, molecular subtypes, and overall survival in multiple datasets. Moreover, CDRS surpasses other predictors, unveiling distinct genomic profiles, pathway activations, and associations with the tumor microenvironment. Notably, CDRS exhibits predictive potential for drug sensitivity, presenting a novel paradigm for CRC risk stratification and personalized treatment avenues.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
10
|
Ding H, Shi H, Chen W, Liu Z, Yang Z, Li X, Qiu Z, Zhuo H. Identification of Key Prognostic Alternative Splicing Events of Costimulatory Molecule-Related Genes in Colon Cancer. Comb Chem High Throughput Screen 2024; 27:1900-1912. [PMID: 37957898 DOI: 10.2174/0113862073249972231026060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE This study aimed to explore the key alternative splicing events in costimulatory molecule-related genes in colon cancer and to determine their correlation with prognosis. METHODS Gene expression RNA-sequencing data, clinical data, and SpliceSeq data of colon cancer were obtained from The Cancer Genome Atlas. Differentially expressed alternative splicing events in genes were identified, Followed by correlation analysis of genes corresponding to differentially expressed alternative splicing events with costimulatory molecule-related genes. Survival analysis was conducted using differentially expressed alternative splicing events in these genes and a prognostic model was constructed. Functional enrichment, proteinprotein interaction network, and splicing factor analyses were performed. RESULTS In total, 6504 differentially expressed alternative splicing events in 3949 genes were identified between tumor and normal tissues. Correlation analysis revealed 3499 differentially expressed alternative splicing events in 2168 costimulatory molecule-related genes. Moreover, 328 differentially expressed alternative splicing events in 288 costimulatory molecule-related genes were associated with overall survival. The prognostic models constructed using these showed considerable power in predicting survival. The ubiquitin A-52 residue ribosomal protein fusion product 1 and ribosomal protein S9 were the hub nodes in the protein-protein interaction network. Furthermore, one splicing factor, splicing factor proline and glutamine-rich, was significantly associated with patient prognosis. Four splicing factor-alternative splicing pairs were obtained from four alternative splicing events in three genes: TBC1 domain family member 8 B, complement factor H, and mitochondrial fission 1. CONCLUSION The identified differentially expressed alternative splicing events of costimulatory molecule-related genes may be used to predict patient prognosis and immunotherapy responses in colon cancer.
Collapse
Affiliation(s)
- Hao Ding
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Huiwen Shi
- Department of General Surgery, No. 971 Hospital of PLA Navy, Shandong, China
| | - Weifeng Chen
- Department of Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Shandong, China
| | - Zhisheng Liu
- Department of General Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Shandong, China
| | - Zhi Yang
- The IVD Medical Marketing Department, 3D Medicines Inc., Shadong, China
| | - Xiaochuan Li
- Department of General Surgery, Qingdao Municipal Hospital, Shandong, China
| | - Zhichao Qiu
- Department of Oncology, Shunde Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Shadong, China
| |
Collapse
|
11
|
Pan Y, Cheng Y. Splicing factor proline- and glutamine-rich regulates cytotoxic T lymphocytes-mediated cytotoxicity on non-small cell lung cancer by directly binding to PD-L1 3'UTR. Medicine (Baltimore) 2023; 102:e35837. [PMID: 37960731 PMCID: PMC10637510 DOI: 10.1097/md.0000000000035837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) can interact with RNAs to regulate gene expression. The function of SFPQ in the immunotherapy of non-small cell lung cancer (NSCLC) is investigated in this study. H1299 and A549 cells were transfected with shSFPQ plasmid. Cell counting kit-8 (CCK-8) and cell clone formation were utilized to detect survival and proliferation. Programmed death-ligand 1 (PD-L1) and SFPQ were detected in NSCLC patients treated with anti-PD-L1 antibody. Dual-luciferase assays, RNA immunoblotting, RNA pull-down, and mRNA stability assay were applied to verify the regulation of PD-L1 with SFPQ. Human peripheral blood mononuclear cells (PBMC)-derived dendritic cells were loaded with irradiated A549 and H1299 cells, which were cultured with autologous CD8+T cells and tumor cells to perform in vitro tumor-specific cytotoxic T lymphocytes (CTL) cytotoxicity analysis. SFPQ silencing inhibited the survival and proliferation of H1299 and A549 cells with down-regulated PD-L1 expression. PD-L1 and SFPQ expression were markedly higher in anti-PD-L1 antibody treatment responders compared to non-responders, which showed a positive Pearson correlation (R = 0.76, P < .001). SFPQ up-regulated the relative mRNA and protein expression of PD-L1 by binding to the PD-L1 3'UTR to slow the decay of PD-L1 mRNA. SFPQ silencing promoted the killing effect of CTL on A549 and H1299 cells. SFPQ up-regulates PD-L1 expression by binding with PD-L1 3'UTR to slow the decay of PD-L1 mRNA, and SFPQ silencing promotes CTL-mediated cytotoxicity on NSCLC cells.
Collapse
Affiliation(s)
- Yanming Pan
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yongxia Cheng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
12
|
Yang L, Gilbertsen A, Jacobson B, Pham J, Fujioka N, Henke CA, Kratzke RA. SFPQ and Its Isoform as Potential Biomarker for Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:12500. [PMID: 37569873 PMCID: PMC10419845 DOI: 10.3390/ijms241512500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer markers are measurable molecules in the blood or tissue that are produced by tumor cells or immune cells in response to cancer progression. They play an important role in clinical diagnosis, prognosis, and anti-drug monitoring. Although DNA, RNA, and even physical images have been used, proteins continue to be the most common marker. There are currently no specific markers for lung cancer. Metastatic lung cancer, particularly non-small-cell lung cancer (NSCLC), is one of the most common causes of death. SFPQ, YY1, RTN4, RICTOR, LARP6, and HELLS are expressed at higher levels in cells from NSCLC than in control or cells from inflammatory diseases. SFPQ shows the most difference between the three cell types. Furthermore, the cytoplasmic isoform of SFPQ is only found in advanced cancers. We have developed ELISAs to detect SFPQ and the long and short isoforms. Evidence has shown that the short isoform exists primarily in cancers. Furthermore, immunocytometry studies and IHC analysis have revealed that SFPQ levels are consistent with ELISA results. In addition, enhanced DNA methylation in the SFPQ gene may facilitate the SFPQ expression differences between control and cancer cells. Considering this, elevated SFPQ level and the isoform location could serve as a cancer diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| | - Jenny Pham
- Clinical and Translational Science Institute, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA;
| | - Naomi Fujioka
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| | - Craig A. Henke
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Robert A. Kratzke
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| |
Collapse
|
13
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
14
|
Rothzerg E, Feng W, Song D, Li H, Wei Q, Fox A, Wood D, Xu J, Liu Y. Single-Cell Transcriptome Analysis Reveals Paraspeckles Expression in Osteosarcoma Tissues. Cancer Inform 2022; 21:11769351221140101. [PMID: 36507075 PMCID: PMC9730017 DOI: 10.1177/11769351221140101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear paraspeckles are subnuclear bodies contracted by nuclear-enriched abundant transcript 1 (NEAT1) long non-coding RNA, localised in the interchromatin space of mammalian cell nuclei. Paraspeckles have been critically involved in tumour progression, metastasis and chemoresistance. To this date, there are limited findings to suggest that paraspeckles, NEAT1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) directly or indirectly play roles in osteosarcoma progression. Herein, we analysed NEAT1, paraspeckle proteins (SFPQ, PSPC1 and NONO) and hnRNP members (HNRNPK, HNRNPM, HNRNPR and HNRNPD) gene expression in 6 osteosarcoma tumour tissues using the single-cell RNA-sequencing method. The normalised data highlighted that the paraspeckles transcripts were highly abundant in osteoblastic OS cells, except NEAT1, which was highly expressed in myeloid cell 1 and 2 subpopulations.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Wenyu Feng
- Department of Orthopaedics, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hengyuan Li
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China,Yun Liu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
15
|
Kok V, Tang JY, Eng G, Tan SY, Chin J, Quek C, Lai WX, Lim TK, Lin Q, Chua J, Cheong J. SFPQ promotes RAS-mutant cancer cell growth by modulating 5'-UTR mediated translational control of CK1α. NAR Cancer 2022; 4:zcac027. [PMID: 36177382 PMCID: PMC9513841 DOI: 10.1093/narcan/zcac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation. We demonstrate that the CK1α 5'-UTR functions as an IRES element in HCT-116 colon cancer cells to promote cap-independent translation. Using tobramycin-affinity RNA-pulldown assays coupled with identification via mass spectrometry, we identified several CK1α 5'-UTR-binding proteins, including SFPQ. We show that RNA interference targeting SFPQ reduced CK1α protein abundance and partially blocked RAS-mutant colon cancer cell growth. Importantly, transcript and protein levels of SFPQ and other CK1α 5'-UTR-associated RNA-binding proteins (RBPs) are found to be elevated in early stages of RAS-mutant cancers, including colorectal and lung adenocarcinoma. Taken together, our study uncovers a previously unappreciated role of RBPs in promoting RAS-mutant cancer cell growth and their potential to serve as promising biomarkers as well as tractable therapeutic targets in cancers driven by oncogenic RAS.
Collapse
Affiliation(s)
- Venetia Jing Tong Kok
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Jia Ying Tang
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Gracie Wee Ling Eng
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Shin Yi Tan
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Joseph Tin Foong Chin
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Chun Hian Quek
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Wei Xuan Lai
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, YLLSoM, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, Singapore
| |
Collapse
|
16
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
18
|
Malhan D, Basti A, Relógio A. Transcriptome analysis of clock disrupted cancer cells reveals differential alternative splicing of cancer hallmarks genes. NPJ Syst Biol Appl 2022; 8:17. [PMID: 35552415 PMCID: PMC9098426 DOI: 10.1038/s41540-022-00225-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence points towards a regulatory role of the circadian clock in alternative splicing (AS). Whether alterations in core-clock components may contribute to differential AS events is largely unknown. To address this, we carried out a computational analysis on recently generated time-series RNA-seq datasets from three core-clock knockout (KO) genes (ARNTL, NR1D1, PER2) and WT of a colorectal cancer (CRC) cell line, and time-series RNA-seq datasets for additional CRC and Hodgkin’s lymphoma (HL) cells, murine WT, Arntl KO, and Nr1d1/2 KO, and murine SCN WT tissue. The deletion of individual core-clock genes resulted in the loss of circadian expression in crucial spliceosome components such as SF3A1 (in ARNTLKO), SNW1 (in NR1D1KO), and HNRNPC (in PER2KO), which led to a differential pattern of KO-specific AS events. All HCT116KO cells showed a rhythmicity loss of a crucial spliceosome gene U2AF1, which was also not rhythmic in higher progression stage CRC and HL cancer cells. AS analysis revealed an increase in alternative first exon events specific to PER2 and NR1D1 KO in HCT116 cells, and a KO-specific change in expression and rhythmicity pattern of AS transcripts related to cancer hallmarks genes including FGFR2 in HCT116_ARNTLKO, CD44 in HCT116_NR1D1KO, and MET in HCT116_PER2KO. KO-specific changes in rhythmic properties of known spliced variants of these genes (e.g. FGFR2 IIIb/FGFR2 IIIc) correlated with epithelial-mesenchymal-transition signalling. Altogether, our bioinformatic analysis highlights a role for the circadian clock in the regulation of AS, and reveals a potential impact of clock disruption in aberrant splicing in cancer hallmark genes.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Alireza Basti
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany. .,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany. .,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
19
|
Karabacak NM, Zheng Y, Dubash TD, Burr R, Micalizzi DS, Wittner BS, Lin M, Wiley D, Comaills V, Emmons E, Niederhoffer K, Ho U, Ukleja J, Che D, Stowe H, Nieman L, Haas W, Stott SL, Lawrence MS, Ting DT, Miyamoto DT, Haber DA, Toner M, Maheswaran S. Differential Kinase Activity Across Prostate Tumor Compartments Defines Sensitivity to Target Inhibition. Cancer Res 2022; 82:1084-1097. [PMID: 35045985 PMCID: PMC8930560 DOI: 10.1158/0008-5472.can-21-2609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.
Collapse
Affiliation(s)
- Nezihi Murat Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Yu Zheng
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Taronish D. Dubash
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Risa Burr
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Douglas S. Micalizzi
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Ben S. Wittner
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Maoxuan Lin
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Devon Wiley
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Valentine Comaills
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Erin Emmons
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Kira Niederhoffer
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Uyen Ho
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Jacob Ukleja
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Dante Che
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Hannah Stowe
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Linda Nieman
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Wilhelm Haas
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Shannon L. Stott
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Michael S. Lawrence
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - David T. Ting
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - David T. Miyamoto
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Daniel A. Haber
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
- Howard Hughes Medical Institute, Bethesda, MD, 20815
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Shyamala Maheswaran
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
20
|
Ju SH, Lee SE, Kang YE, Shong M. Development of Metabolic Synthetic Lethality and Its Implications for Thyroid Cancer. Endocrinol Metab (Seoul) 2022; 37:53-61. [PMID: 35255601 PMCID: PMC8901971 DOI: 10.3803/enm.2022.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer therapies targeting genetic alterations are a topic of great interest in the field of thyroid cancer, which frequently harbors mutations in the RAS, RAF, and RET genes. Unfortunately, U.S. Food and Drug Administration-approved BRAF inhibitors have relatively low therapeutic efficacy against BRAF-mutant thyroid cancer; in addition, the cancer often acquires drug resistance, which prevents effective treatment. Recent advances in genomics and transcriptomics are leading to a more complete picture of the range of mutations, both driver and messenger, present in thyroid cancer. Furthermore, our understanding of cancer suggests that oncogenic mutations drive tumorigenesis and induce rewiring of cancer cell metabolism, which promotes survival of mutated cells. Synthetic lethality (SL) is a method of neutralizing mutated genes that were previously considered untargetable by traditional genotype-targeted treatments. Because these metabolic events are specific to cancer cells, we have the opportunity to develop new therapies that target tumor cells specifically without affecting healthy tissue. Here, we describe developments in metabolism-based cancer therapy, focusing on the concept of metabolic SL in thyroid cancer. Finally, we discuss the essential implications of metabolic reprogramming and its role in the future direction of SL for thyroid cancer.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|
21
|
Meng Y, Li S, Zhang Q, Ben S, Zhu Q, Du M, Gu D. LncRNA‐422 suppresses the proliferation and growth of colorectal cancer cells by targeting SFPQ. Clin Transl Med 2022; 12:e664. [PMID: 35075799 PMCID: PMC8787101 DOI: 10.1002/ctm2.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yixuan Meng
- Department of Oncology Nanjing First Hospital Nanjing Medical University Nanjing China
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Shuwei Li
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Qiuyi Zhang
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Shuai Ben
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Qiuyuan Zhu
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Mulong Du
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Biostatistics Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Dongying Gu
- Department of Oncology Nanjing First Hospital Nanjing Medical University Nanjing China
| |
Collapse
|
22
|
Mönch D, Koch J, Maaß A, Janssen N, Mürdter T, Renner P, Fallier-Becker P, Solaß W, Schwab M, Dahlke MH, Schlitt HJ, Leibold T. A human ex vivo coculture model to investigate peritoneal metastasis and innovative treatment options. Pleura Peritoneum 2021; 6:121-129. [PMID: 34676285 PMCID: PMC8482451 DOI: 10.1515/pp-2021-0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives Peritoneal metastasis (PM) is commonly observed in patients with colorectal cancer (CRC). The outcome of these patients is poor, with an average survival of only six months without therapy, which requires a better understanding of PM biology and new treatment strategies. Methods We established and characterized a human ex vivo peritoneal model to investigate the mechanisms of peritoneal seeding and possible treatment options. For this, CRC cell lines and patient-derived tumor organoids were cultured together with human peritoneum to investigate the invasion of malignant cells and the effects of local chemotherapy. Results Fresh human peritoneum was cultured for up to three weeks in a stainless steel ring system, allowing for survival of all peritoneal structures. Peritoneal cell survival was documented by light microscopy and immunohistochemical staining. Further, immunohistological characterization of the tissue revealed CD3-positive T-lymphocytes and vimentin-positive fibroblasts within the peritoneum. In addition, extracellular matrix components (collagens, matrix metalloproteinases) were localized within the tissue. Coculture with CRC cell lines and patient-derived CRC organoids revealed that cancer cells grew on the peritoneum and migrated into the tissue. Coculture with CRC cells confirmed that hyperthermal treatment at 41 °C for 90 min significantly enhanced the intracellular entry of doxorubicin. Moreover, treatment with mitomycin C under hyperthermic conditions significantly reduced the amount of cancer cells within the peritoneum. Conclusions This human ex vivo peritoneal model provides a stringent and clinically relevant platform for the investigation of PM and for further elucidation of possible treatment options.
Collapse
Affiliation(s)
- Dina Mönch
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Jana Koch
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Annika Maaß
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Philipp Renner
- Department of General and Visceral Surgery, Robert-Bosch-Hospital, Stuttgart, Germany.,University Medical Center Regensburg, Regensburg, Germany
| | | | - Wiebke Solaß
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy, and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marc-H Dahlke
- Department of General and Visceral Surgery, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Hans J Schlitt
- University Medical Center Regensburg, Regensburg, Germany
| | - Tobias Leibold
- Department of General and Visceral Surgery, Robert-Bosch-Hospital, Stuttgart, Germany
| |
Collapse
|
23
|
Uhlitz F, Bischoff P, Peidli S, Sieber A, Trinks A, Lüthen M, Obermayer B, Blanc E, Ruchiy Y, Sell T, Mamlouk S, Arsie R, Wei T, Klotz‐Noack K, Schwarz RF, Sawitzki B, Kamphues C, Beule D, Landthaler M, Sers C, Horst D, Blüthgen N, Morkel M. Mitogen-activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Mol Med 2021; 13:e14123. [PMID: 34409732 PMCID: PMC8495451 DOI: 10.15252/emmm.202114123] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023] Open
Abstract
In colorectal cancer, oncogenic mutations transform a hierarchically organized and homeostatic epithelium into invasive cancer tissue lacking visible organization. We sought to define transcriptional states of colorectal cancer cells and signals controlling their development by performing single-cell transcriptome analysis of tumors and matched non-cancerous tissues of twelve colorectal cancer patients. We defined patient-overarching colorectal cancer cell clusters characterized by differential activities of oncogenic signaling pathways such as mitogen-activated protein kinase and oncogenic traits such as replication stress. RNA metabolic labeling and assessment of RNA velocity in patient-derived organoids revealed developmental trajectories of colorectal cancer cells organized along a mitogen-activated protein kinase activity gradient. This was in contrast to normal colon organoid cells developing along graded Wnt activity. Experimental targeting of EGFR-BRAF-MEK in cancer organoids affected signaling and gene expression contingent on predictive KRAS/BRAF mutations and induced cell plasticity overriding default developmental trajectories. Our results highlight directional cancer cell development as a driver of non-genetic cancer cell heterogeneity and re-routing of trajectories as a response to targeted therapy.
Collapse
Affiliation(s)
- Florian Uhlitz
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- IRI Life SciencesHumboldt University of BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Philip Bischoff
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Stefan Peidli
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- IRI Life SciencesHumboldt University of BerlinBerlinGermany
| | - Anja Sieber
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- IRI Life SciencesHumboldt University of BerlinBerlinGermany
| | - Alexandra Trinks
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- BIH Bioportal Single CellsBerlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Mareen Lüthen
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI)Berlin Institute of Health at Charité Universitätsmedizin – BerlinBerlinGermany
| | - Eric Blanc
- Core Unit Bioinformatics (CUBI)Berlin Institute of Health at Charité Universitätsmedizin – BerlinBerlinGermany
| | - Yana Ruchiy
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Thomas Sell
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- IRI Life SciencesHumboldt University of BerlinBerlinGermany
| | - Soulafa Mamlouk
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Roberto Arsie
- Max Delbrück Center for Molecular MedicineBerlin Institute for Medical Systems Biology (BIMSB)BerlinGermany
| | - Tzu‐Ting Wei
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular MedicineBerlin Institute for Medical Systems Biology (BIMSB)BerlinGermany
| | - Kathleen Klotz‐Noack
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Institute of Medical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Roland F Schwarz
- Max Delbrück Center for Molecular MedicineBerlin Institute for Medical Systems Biology (BIMSB)BerlinGermany
- BIFOLD – Berlin Institute for the Foundations of Learning and DataBerlinGermany
| | - Birgit Sawitzki
- Institute of Medical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Kamphues
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of SurgeryCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Dieter Beule
- Core Unit Bioinformatics (CUBI)Berlin Institute of Health at Charité Universitätsmedizin – BerlinBerlinGermany
| | - Markus Landthaler
- Max Delbrück Center for Molecular MedicineBerlin Institute for Medical Systems Biology (BIMSB)BerlinGermany
| | - Christine Sers
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - David Horst
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Nils Blüthgen
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- IRI Life SciencesHumboldt University of BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Markus Morkel
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK) Partner Site BerlinGerman Cancer Research Center (DKFZ)HeidelbergGermany
- BIH Bioportal Single CellsBerlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
24
|
SFPQ rescues F508del-CFTR expression and function in cystic fibrosis bronchial epithelial cells. Sci Rep 2021; 11:16645. [PMID: 34404863 PMCID: PMC8371023 DOI: 10.1038/s41598-021-96141-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.
Collapse
|
25
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|