1
|
Penchev I, Gumbin S, Scavone F, Berninghausen O, Becker T, Kopito R, Beckmann R. UFMylation orchestrates spatiotemporal coordination of RQC at the ER. SCIENCE ADVANCES 2025; 11:eadv0435. [PMID: 40315331 PMCID: PMC12047416 DOI: 10.1126/sciadv.adv0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Degradation of arrest peptides from endoplasmic reticulum (ER) translocon-bound 60S ribosomal subunits via the ribosome-associated quality control (ER-RQC) pathway requires covalent modification of RPL26/uL24 on 60S ribosomal subunits with UFM1. However, the underlying mechanism that coordinates the UFMylation and RQC pathways remains elusive. Structural analysis of ER-RQC intermediates revealed concomitant binding and direct interaction of the UFMylation and RQC machineries on the 60S. In the presence of an arrested peptidyl-transfer RNA, the RQC factor NEMF and the UFM1 E3 ligase (E3UFM1) form a direct interaction via the UFL1 subunit of E3UFM1, and UFL1 adopts a conformation distinct from that previously observed for posttermination 60S. While this concomitant binding occurs on translocon-bound 60S, LTN1 recruitment and arrest peptide degradation require UFMylation-dependent 60S dissociation from the translocon. These data reveal a mechanism by which the UFMylation cycle orchestrates ER-RQC.
Collapse
Affiliation(s)
- Ivan Penchev
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Samantha Gumbin
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ron Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| |
Collapse
|
2
|
Fabret C, Giudice E, Chat S, Gillet R, Namy O. RQC2 is a major player in peptide release from stalled ribosomes. Structure 2025:S0969-2126(25)00105-4. [PMID: 40187343 DOI: 10.1016/j.str.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/15/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells prevent the accumulation of potentially toxic aberrant polypeptides and maintain ribosome availability through surveillance and clearance mechanisms, including the evolutionarily conserved ribosome-associated quality control complex (RQC). RQC pathways have been widely investigated, with the identification of several factors ANKZF1/Vms1p, Ptrh1, and Arb1p involved in release/cleavage of the peptide-tRNA from 60S subunits. We aimed here to identify the genes involved in peptide release from stalled ribosomes. Using a genetic screen, we identified a mutant allele of RQC2 as involved in this process. We present the cryoelectron microscopy (cryo-EM) structure of RQC, which reveals how the F340I mutation affects mutant binding. This altered binding, in turn, disrupts the A-site's ability to bind the tRNA in the presence of Ltn1. These data account for the limitation of C-terminal alanine and threonine (CAT) tailing by the F340I mutation and suggest a model explaining the role of the Rqc2 protein in peptide release.
Collapse
Affiliation(s)
- Céline Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Emmanuel Giudice
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sophie Chat
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Reynald Gillet
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2025; 292:936-959. [PMID: 38949989 PMCID: PMC11880988 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
- Department of Biology, Faculty of ScienceAnkara UniversityTurkey
| | | |
Collapse
|
4
|
Zhou C, Liu C, Yan B, Sun J, Li S, Li J, Wang J, Huang X, Yan W, Yang S, Fu C, Qin P, Fu X, Zhao X, Wu Y, Song X, Wang Y, Qian W, Yang Y, Cao X. tRNA selectivity during ribosome-associated quality control regulates the critical sterility-inducing temperature in two-line hybrid rice. Proc Natl Acad Sci U S A 2025; 122:e2417526122. [PMID: 39913205 PMCID: PMC11831146 DOI: 10.1073/pnas.2417526122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025] Open
Abstract
The two-line hybrid rice system, a cutting-edge hybrid rice breeding technology, has greatly boosted global food security. In thermo-sensitive genic male sterile (TGMS) lines, the critical sterility-inducing temperature (CSIT; the temperature at which TGMS lines change from male fertile to complete male sterile) acts as a key threshold. We recently uncovered that thermo-sensitive genic male sterility 5 (tms5), a sterile locus presenting in over 95% of TGMS lines, leads to the overaccumulation of 2',3'-cyclic phosphate (cP)-ΔCCA-tRNAs and a deficiency of mature tRNAs, which underlies the molecular mechanism of tms5-mediated TGMS. However, there are a few reports on the regulatory mechanism controlling CSIT. Here, we identified a suppressor of tms5, an amino acid substitution (T552I) in the rice Rqc2 (ribosome-associated quality control 2), increases the CSIT in tms5 lines through its C-terminal alanine and threonine modification (CATylation) activity. This substitution alters tRNA selectivity, leading to the recruitment of different tRNAs to the A-site of ribosome and CATylation rate by OsRqc2 during ribosome-associated quality control (RQC), a process that rescues stalled ribosomes and degrades abnormal nascent chains during translational elongation. Further, the mutation restores the levels of mature tRNA-Ser/Ile to increase the CSIT of tms5 lines. Our findings reveal the origin of overaccumulated cP-ΔCCA-tRNAs in tms5 lines, further deepening our understanding of the regulatory network in governing CSIT of TGMS lines containing tms5.
Collapse
Affiliation(s)
- Can Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of the Chinese Academy of Sciences, Beijing100039, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Bin Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jing Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Shengdong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of the Chinese Academy of Sciences, Beijing100039, China
| | - Ji Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jia Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Wei Yan
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen518055, China
| | - Shuying Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Chenjian Fu
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
| | - Peng Qin
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
| | - Xingxue Fu
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
| | - Xinghui Zhao
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
| | - Yaxian Wu
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of the Chinese Academy of Sciences, Beijing100039, China
| | - Wenfeng Qian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of the Chinese Academy of Sciences, Beijing100039, China
| | - Yuanzhu Yang
- Yuan Longping High-tech Agriculture Co., Ltd., Changsha410125, China
- Key Laboratory of Rice Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Changsha410001, Hunan, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of the Chinese Academy of Sciences, Beijing100039, China
| |
Collapse
|
5
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
6
|
Iimori Y, Morita T, Masuda T, Kitajima S, Kono N, Kageyama S, Galipon J, Sasaki AT, Kanai A. SLFN11-mediated tRNA regulation induces cell death by disrupting proteostasis in response to DNA-damaging agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632070. [PMID: 39829761 PMCID: PMC11741311 DOI: 10.1101/2025.01.08.632070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA-damaging agents (DDAs) have long been used in cancer therapy. However, the precise mechanisms by which DDAs induce cell death are not fully understood and drug resistance remains a major clinical challenge. Schlafen 11 (SLFN11) was identified as the gene most strongly correlated with the sensitivity to DDAs based on mRNA expression levels. SLFN11 sensitizes cancer cells to DDAs by cleaving and downregulating tRNALeu(TAA). Elucidating the detailed mechanism by which SLFN11 induces cell death is expected to provide insights into overcoming drug resistance. Here, we show that, upon administration of DDAs, SLFN11 cleaves tRNALeu(TAA), leading to ER stress and subsequent cell death regulated by inositol-requiring enzyme 1 alpha (IRE1α). These responses were significantly alleviated by SLFN11 knockout or transfection of tRNALeu(TAA). Our proteomic analysis suggests that tRNALeu(TAA) influences proteins essential for maintaining proteostasis, especially those involved in ubiquitin-dependent proteolysis. Additionally, we identified the cleavage sites of tRNALeu(TAA) generated by SLFN11 in cells, and revealed that tRNA fragments contribute to ER stress and cell death. These findings suggest that SLFN11 plays a crucial role in proteostasis by regulating tRNAs, and thus determines cell fate under DDA treatment. Consequently, targeting SLFN11-mediated tRNA regulation could offer a novel approach to improve cancer therapy.
Collapse
Affiliation(s)
- Yuki Iimori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, 992-8510, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Cincinnati, OH, 45267, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
7
|
Chen L, Mo J, Tan Y, Lv L, Liu J. Protocol for identification of NEMF-mediated C-terminal extensions on mitochondrial nonstop proteins via customized MS/MS spectra database searching. STAR Protoc 2024; 5:103366. [PMID: 39395174 PMCID: PMC11736100 DOI: 10.1016/j.xpro.2024.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
The ribosome-associated protein quality control (RQC) core factor nuclear export mediator factor (NEMF) appends C-terminal extended sequences (CESs) to ribosome-stalled nascent chains (NCs). Specific CESs compositions could be directly recognized by enzymes and facilitate NC degradation. Yet, NEMF-mediated CESs remains largely unidentified. Here, we present a protocol for identifying and characterizing NEMF-mediated C-terminal modifications on mitochondrial NCs (mitoNCs) via tandem mass spectrometry (MS/MS) analysis. We describe strategies aimed at constructing a customized MS/MS spectra database for unknown CESs and detail the steps for CES-modified sample preparation. For complete details on the use and execution of this protocol, please refer to Lv et al.1.
Collapse
Affiliation(s)
- Leijie Chen
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Digestive Diseases in Hunan Province, Changsha, Hunan 410011, China
| | - Jinyou Mo
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Digestive Diseases in Hunan Province, Changsha, Hunan 410011, China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Digestive Diseases in Hunan Province, Changsha, Hunan 410011, China.
| | - Jia Liu
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell 2024; 84:4334-4349.e7. [PMID: 39488212 DOI: 10.1016/j.molcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
Collapse
Affiliation(s)
- Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mi-Jeong Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kian Hua Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Young-Jun Choe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
10
|
Khan D, Vinayak AA, Sitron CS, Brandman O. Mechanochemical forces regulate the composition and fate of stalled nascent chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606406. [PMID: 39131335 PMCID: PMC11312545 DOI: 10.1101/2024.08.02.606406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The ribosome-associated quality control (RQC) pathway resolves stalled ribosomes. As part of RQC, stalled nascent polypeptide chains (NCs) are appended with CArboxy-Terminal amino acids (CAT tails) in an mRNA-free, non-canonical elongation process. CAT tail composition includes Ala, Thr, and potentially other residues. The relationship between CAT tail composition and function has remained unknown. Using biochemical approaches in yeast, we discovered that mechanochemical forces on the NC regulate CAT tailing. We propose CAT tailing initially operates in an "extrusion mode" that increases NC lysine accessibility for on-ribosome ubiquitination. Thr in CAT tails enhances NC extrusion by preventing formation of polyalanine, which can form α-helices that lower extrusion efficiency and disrupt termination of CAT tailing. After NC ubiquitylation, pulling forces on the NC switch CAT tailing to an Ala-only "release mode" which facilitates nascent chain release from large ribosomal subunits and NC degradation. Failure to switch from extrusion to release mode leads to accumulation of NCs on large ribosomal subunits and proteotoxic aggregation of Thr-rich CAT tails.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananya A Vinayak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Li X, Wang J, Li J, Zhou Y, Huang X, Guo L, Liu R, Luo Y, Tan X, Hu X, Gao Y, Yu B, Fu M, Wang P, Zhou S. Exploring genetic codon expansion for unnatural amino acid incorporation in filamentous fungus Aspergillus nidulans. J Biotechnol 2024; 393:91-99. [PMID: 39067577 DOI: 10.1016/j.jbiotec.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Genetic code expansion technology allows the incorporation of unnatural amino acids (UAAs) into proteins, which is useful in protein engineering, synthetic biology, and gene therapy. Despite its potential applications in various species, filamentous fungi remain unexplored. This study aims to address this gap by developing these techniques in Aspergillus nidulans. We introduced an amber stop codon into a specific sequence within the reporter gene expressed in A. nidulans and replaced the anticodon of the fungal tRNATyr with CUA. This resulted in the synthesis of the target protein, confirming the occurrence of amber suppression in the fungus. When exogenous E. coli tRNATyrCUA (Ec. tRNATyrCUA) and E. coli tyrosyl-tRNA (Ec.TyrRS) were introduced into A. nidulans, they successfully synthesized the target protein via amber suppression and were shown to be orthogonal to the fungal translation system. By replacing the wild-type Ec.TyrRS with a mutant with a higher affinity for the UAA O-methyl-L-tyrosine, the fungal system was able to initiate the synthesis of the UAA-labeled protein (UAA-protein). We further increased the expression level of the UAA-protein through several rational modifications. The successful development of a genetic code expansion technique for A. nidulans has introduced a potentially valuable approach to the study of fungal protein structure and function.
Collapse
Affiliation(s)
- Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Tan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Gao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Bingzi Yu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Mingxin Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin cities, Saint Paul, MN 55108, USA
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Plessis-Belair J, Ravano K, Han E, Janniello A, Molina C, Sher RB. NEMF mutations in mice illustrate how Importin-β specific nuclear transport defects recapitulate neurodegenerative disease hallmarks. PLoS Genet 2024; 20:e1011411. [PMID: 39312574 PMCID: PMC11449308 DOI: 10.1371/journal.pgen.1011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Pathological disruption of Nucleocytoplasmic Transport (NCT), such as the mis-localization of nuclear pore complex proteins (Nups), nuclear transport receptors, Ran-GTPase, and RanGAP1, are seen in both animal models and in familial and sporadic forms of amyotrophic lateral sclerosis (ALS), frontal temporal dementia and frontal temporal lobar degeneration (FTD\FTLD), and Alzheimer's and Alzheimer's Related Dementias (AD/ADRD). However, the question of whether these alterations represent a primary cause, or a downstream consequence of disease is unclear, and what upstream factors may account for these defects are unknown. Here, we report four key findings that shed light on the upstream causal role of Importin-β-specific nuclear transport defects in disease onset. First, taking advantage of two novel mouse models of NEMF neurodegeneration (NemfR86S and NemfR487G) that recapitulate many cellular and biochemical aspects of neurodegenerative diseases, we find an Importin-β-specific nuclear import block. Second, we observe cytoplasmic mis-localization and aggregation of multiple proteins implicated in the pathogenesis of ALS/FTD and AD/ADRD, including TDP43, Importin-β, RanGap1, and Ran. These findings are further supported by a pathological interaction between Importin-β and the mutant NEMFR86S protein in cytoplasmic accumulations. Third, we identify similar transcriptional dysregulation in key genes associated with neurodegenerative disease. Lastly, we show that even transient pharmaceutical inhibition of Importin-β in both mouse and human neuronal and non-neuronal cells induces key proteinopathies and transcriptional alterations seen in our mouse models and in neurodegeneration. Our convergent results between mouse and human neuronal and non-neuronal cellular biology provide mechanistic evidence that many of the mis-localized proteins and dysregulated transcriptional events seen in multiple neurodegenerative diseases may in fact arise primarily from a primary upstream defect in Importin- β nuclear import. These findings have critical implications for investigating how sporadic forms of neurodegeneration may arise from presently unidentified genetic and environmental perturbations in Importin-β function.
Collapse
Affiliation(s)
- Jonathan Plessis-Belair
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathryn Ravano
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Ellen Han
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Aubrey Janniello
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Catalina Molina
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Roger B. Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
13
|
Ennis A, Wang L, Wang X, Yu C, Saidi L, Xu Y, Yun S, Huang L, Ye Y. NEMF-mediated CAT-tailing defines distinct branches of translocation-associated quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.610005. [PMID: 39253483 PMCID: PMC11383284 DOI: 10.1101/2024.08.27.610005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ribosome stalling during co-translational translocation at the endoplasmic reticulum (ER) causes translocon clogging and impairs ER protein biogenesis. Mammalian cells resolve translocon clogging vial a poorly characterized translocation-associated quality control (TAQC) process. Here, we combine genome-wide CRISPR screen with live cell imaging to dissect the molecular linchpin of TAQC. We show that substrates translated from mRNAs bearing a ribosome stalling poly(A) sequence are degraded by lysosomes and the proteasome, while substrates encoded by non-stop mRNAs are degraded by an unconventional ER-associated degradation (ERAD) mechanism involving ER-to-Golgi trafficking and KDEL-dependent substrate retrieval. The triaging diversity appears to result from the heterogeneity of NEMF-mediated CATylation, because a systematic characterization of representative CAT-tail mimetics establishes an AT-rich tail as a "degron" for ERAD, whereas an AG-rich tail can direct a secretory protein to the lysosome. Our study reveals an unexpected protein sorting function for CAT-tailing that safeguards ER protein biogenesis.
Collapse
Affiliation(s)
- Amanda Ennis
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Current affiliation: Innovent USA, 319 N Bernardo Avenue, Mountain View, CA, 94043
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92687, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92687, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Current affiliation: Yottabiomed, LLC. 8908 Ewing Dr., Bethesda, MD 20817
| | - Lan Huang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92687, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Hung HC, Costas-Insua C, Holbrook SE, Stauffer JE, Martin PB, Müller TA, Schroeder DG, Kigoshi-Tansho Y, Xu H, Rudolf R, Cox GA, Joazeiro CAP. Poly-alanine-tailing is a modifier of neurodegeneration caused by Listerin mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.608776. [PMID: 39229065 PMCID: PMC11370587 DOI: 10.1101/2024.08.24.608776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The surveillance of translation is critical for the fitness of organisms from bacteria to humans. Ribosome-associated Quality Control (RQC) is a surveillance mechanism that promotes the elimination of truncated polypeptides, byproducts of ribosome stalling during translation. In canonical mammalian RQC, NEMF binds to the large ribosomal subunit and recruits the E3 ubiquitin ligase Listerin, which marks the nascent-chains for proteasomal degradation. NEMF additionally extends the nascent-chain's C-terminus with poly-alanine ('Ala-tail'), exposing lysines in the ribosomal exit tunnel for ubiquitination. In an alternative, Listerin-independent RQC pathway, released nascent-chains are targeted by Ala-tail-binding E3 ligases. While mutations in Listerin or in NEMF selectively elicit neurodegeneration in mice and humans, the physiological significance of Ala-tailing and its role in disease have remained unknown. Here, we report the analysis of mice in which NEMF's Ala-tailing activity was selectively impaired. Whereas the Nemf homozygous mutation did not affect lifespan and only led to mild motor defects, genetic interaction analyses uncovered its synthetic lethal phenotype when combined with the lister neurodegeneration-causing mutation. Conversely, the lister phenotype was markedly improved when Ala-tailing capacity was partially reduced by a heterozygous Nemf mutation. Providing a plausible mechanism for this striking switch from early neuroprotection to subsequent neurotoxicity, we found that RQC substrates that evade degradation form amyloid-like aggregates in an Ala-tail dependent fashion. These findings uncover a critical role for Ala-tailing in mammalian proteostasis, and deepen our molecular understanding of pathophysiological roles of RQC in neurodegeneration.
Collapse
Affiliation(s)
- Hao-Chih Hung
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carlos Costas-Insua
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | - Tina A. Müller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Haifei Xu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | | | - Claudio A. P. Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
16
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
17
|
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EH, Jansen-West K, Kaufhold R, Gomez N, Sher R, Petrucelli L, Barmada S, Todd P. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. Nucleic Acids Res 2024; 52:5928-5949. [PMID: 38412259 PMCID: PMC11162809 DOI: 10.1093/nar/gkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sinem Ovunc
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross Kaufhold
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas B Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Li G, Wang Z, Gao B, Dai K, Niu X, Li X, Wang Y, Li L, Wu X, Li H, Yu Z, Wang Z, Chen G. ANKZF1 knockdown inhibits glioblastoma progression by promoting intramitochondrial protein aggregation through mitoRQC. Cancer Lett 2024; 591:216895. [PMID: 38670305 DOI: 10.1016/j.canlet.2024.216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Protein homeostasis is fundamental to the development of tumors. Ribosome-associated quality-control (RQC) is able to add alanine and threonine to the stagnant polypeptide chain C-terminal (CAT-tail) when protein translation is hindered, while Ankyrin repeat and zinc-finger domain-containing-protein 1 (ANKZF1) can counteract the formation of the CAT-tail, preventing the aggregation of polypeptide chains. In particular, ANKZF1 plays an important role in maintaining mitochondrial protein homeostasis by mitochondrial RQC (mitoRQC) after translation stagnation of precursor proteins targeting mitochondria. However, the role of ANKZF1 in glioblastoma is unclear. Therefore, the current study was aimed to investigate the effects of ANKZF1 in glioblastoma cells and a nude mouse glioblastoma xenograft model. Here, we reported that knockdown of ANKZF1 in glioblastoma cells resulted in the accumulation of CAT-tail in mitochondria, leading to the activated mitochondrial unfolded protein response (UPRmt) and inhibits glioblastoma malignant progression. Excessive CAT-tail sequestered mitochondrial chaperones HSP60, mtHSP70 and proteases LONP1 as well as mitochondrial respiratory chain subunits ND1, Cytb, mtCO2 and ATP6, leading to mitochondrial oxidative phosphorylation dysfunction, membrane potential impairment, and mitochondrial apoptotic pathway activation. Our study highlights ANKZF1 as a valuable target for glioblastoma intervention and provides an innovative insight for the treatment of glioblastoma through the regulating of mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Hefei First People's Hospital, Hefei, 230031, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yunjiang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
19
|
Lv L, Mo J, Qing Y, Wang S, Chen L, Mei A, Xu R, Huang H, Tan J, Li Y, Liu J. NEMF-mediated Listerin-independent mitochondrial translational surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP. Cell Rep 2024; 43:113860. [PMID: 38412092 DOI: 10.1016/j.celrep.2024.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The ribosome-associated protein quality control (RQC) pathway acts as a translational surveillance mechanism to maintain proteostasis. In mammalian cells, the cytoplasmic RQC pathway involves nuclear export mediator factor (NEMF)-dependent recruitment of the E3 ligase Listerin to ubiquitinate ribosome-stalled nascent polypeptides on the lysine residue for degradation. However, the quality control of ribosome-stalled nuclear-encoded mitochondrial nascent polypeptides remains elusive, as these peptides can be partially imported into mitochondria through translocons, restricting accessibility to the lysine by Listerin. Here, we identify a Listerin-independent organelle-specific mitochondrial RQC pathway that acts on NEMF-mediated carboxy-terminal poly-alanine modification. In the pathway, mitochondrial proteins carrying C-end poly-Ala tails are recognized by the cytosolic E3 ligase Pirh2 and the ClpXP protease in the mitochondria, which coordinately clear ribosome-stalled mitochondrial nascent polypeptides. Defects in this elimination pathway result in NEMF-mediated aggregates and mitochondrial integrity failure, thus providing a potential molecular mechanism of the RQC pathway in mitochondrial-associated human diseases.
Collapse
Affiliation(s)
- Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jinyou Mo
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yumin Qing
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Leijie Chen
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ru Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Hualin Huang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Yifu Li
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jia Liu
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
20
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
21
|
Dos Santos OAL, Carneiro RL, Requião RD, Ribeiro-Alves M, Domitrovic T, Palhano FL. Transcriptional profile of ribosome-associated quality control components and their associated phenotypes in mammalian cells. Sci Rep 2024; 14:1439. [PMID: 38228636 PMCID: PMC10792078 DOI: 10.1038/s41598-023-50811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
During protein synthesis, organisms detect translation defects that induce ribosome stalling and result in protein aggregation. The Ribosome-associated Quality Control (RQC) complex, comprising TCF25, LTN1, and NEMF, is responsible for identifying incomplete protein products from unproductive translation events, targeting them for degradation. Although RQC disruption causes adverse effects on vertebrate neurons, data regarding mRNA/protein expression and regulation across tissues are lacking. Employing high-throughput methods, we analyzed public datasets to explore RQC gene expression and phenotypes. Our findings revealed widespread expression of RQC components in human tissues; however, silencing of RQC yielded only mild negative effects on cell growth. Notably, TCF25 exhibited elevated mRNA levels that were not reflected in the protein content. We experimentally demonstrated that this disparity arose from post-translational protein degradation by the proteasome. Additionally, we observed that cellular aging marginally influenced RQC expression, leading to reduced mRNA levels in specific tissues. Our results suggest the necessity of RQC expression in all mammalian tissues. Nevertheless, when RQC falters, alternative mechanisms seem to compensate, ensuring cell survival under nonstress conditions.
Collapse
Affiliation(s)
- Otávio Augusto Leitão Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodrigo D Requião
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Ribeiro-Alves
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, 21040-900, Brazil
| | - Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
22
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
23
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
25
|
Patil PR, Burroughs AM, Misra M, Cerullo F, Costas-Insua C, Hung HC, Dikic I, Aravind L, Joazeiro CAP. Mechanism and evolutionary origins of alanine-tail C-degron recognition by E3 ligases Pirh2 and CRL2-KLHDC10. Cell Rep 2023; 42:113100. [PMID: 37676773 PMCID: PMC10591846 DOI: 10.1016/j.celrep.2023.113100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.
Collapse
Affiliation(s)
- Pratik Rajendra Patil
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mohit Misra
- Institute of Biochemistry II, Goethe University Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Federico Cerullo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Carlos Costas-Insua
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Hao-Chih Hung
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
26
|
Vind AC, Snieckute G, Bekker-Jensen S, Blasius M. Run, Ribosome, Run: From Compromised Translation to Human Health. Antioxid Redox Signal 2023; 39:336-350. [PMID: 36825529 DOI: 10.1089/ars.2022.0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Translation is an essential cellular process, and diverse signaling pathways have evolved to deal with problems arising during translation. Erroneous stalls and unresolved ribosome collisions are implicated in many pathologies, including neurodegeneration and metabolic dysregulation. Recent Advances: Many proteins involved in detection and clearance of stalled and collided ribosomes have been identified and studied in detail. Ribosome profiling techniques have revealed extensive and nonprogrammed ribosome stalling and leaky translation into the 3' untranslated regions of mRNAs. Impairment of protein synthesis has been linked to aging in yeast and mice. Critical Issues: Ribosomes act as sensors of cellular states, but the molecular mechanisms, as well as physiological relevance, remain understudied. Most of our current knowledge stems from work in yeast and simple multicellular organisms such as Caenorhabditis elegans, while we are only beginning to comprehend the role of ribosome surveillance in higher organisms. As an example, the ribotoxic stress response, a pathway responding to global translational stress, has been studied mostly in response to small translation inhibitors and ribotoxins, and has only recently been explored in physiological settings. This review focuses on ribosome-surveillance pathways and their importance for cell and tissue homeostasis upon naturally occurring insults such as oxidative stress, nutrient deprivation, and viral infections. Future Directions: A better insight into the physiological roles of ribosome-surveillance pathways and their crosstalk could lead to an improved understanding of human pathologies and aging. Antioxid. Redox Signal. 39, 336-350.
Collapse
Affiliation(s)
- Anna Constance Vind
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Goda Snieckute
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Viera Ortiz AP, Cajka G, Olatunji OA, Mikytuck B, Shalem O, Lee EB. Impaired ribosome-associated quality control of C9orf72 arginine-rich dipeptide-repeat proteins. Brain 2023; 146:2897-2912. [PMID: 36516294 PMCID: PMC10316761 DOI: 10.1093/brain/awac479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Protein quality control pathways have evolved to ensure the fidelity of protein synthesis and efficiently clear potentially toxic protein species. Defects in ribosome-associated quality control and its associated factors have been implicated in the accumulation of aberrant proteins and neurodegeneration. C9orf72 repeat-associated non-AUG translation has been suggested to involve inefficient translation elongation, lead to ribosomal pausing and activation of ribosome-associated quality control pathways. However, the role of the ribosome-associated quality control complex in the processing of proteins generated through this non-canonical translation is not well understood. Here we use reporter constructs containing the C9orf72-associated hexanucleotide repeat, ribosome-associated quality control complex deficient cell models and stain for ribosome-associated quality control markers in C9orf72-expansion carrier human tissue to understand its role in dipeptide-repeat protein pathology. Our studies show that canonical ribosome-associated quality control substrates products are efficiently cleared by the ribosome-associated quality control complex in mammalian cells. Furthermore, using stalling reporter constructs, we show that repeats associated with the C9orf72-expansion induce ribosomal stalling when arginine (R)-rich dipeptide-repeat proteins are synthesized in a length-dependent manner. However, despite triggering this pathway, these arginine-rich dipeptide-repeat proteins are not efficiently processed by the core components of the ribosome-associated quality control complex (listerin, nuclear-export mediator factor and valosin containing protein) partly due to lack of lysine residues, which precludes ubiquitination. Deficient processing by this complex may be implicated in C9orf72-expansion associated disease as dipeptide-repeat protein inclusions were observed to be predominantly devoid of ubiquitin and co-localize with nuclear-export mediator factor in mutation carriers' frontal cortex and cerebellum tissue. These findings suggest that impaired processing of these arginine-rich dipeptide-repeat proteins derived from repeat-associated non-AUG translation by the ribosome-associated quality control complex may contribute to protein homeostasis dysregulation observed in C9orf72-expansion amyotrophic lateral sclerosis and frontotemporal degeneration neuropathogenesis.
Collapse
Affiliation(s)
- Ashley P Viera Ortiz
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Cajka
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olamide A Olatunji
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey Mikytuck
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Patil PR, Burroughs AM, Misra M, Cerullo F, Dikic I, Aravind L, Joazeiro CAP. Mechanism and evolutionary origins of Alanine-tail C-degron recognition by E3 ligases Pirh2 and CRL2-KLHDC10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539038. [PMID: 37205381 PMCID: PMC10187211 DOI: 10.1101/2023.05.03.539038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Ribosome-associated Quality Control (RQC), nascent-polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ('Ala-tails') that function outside ribosomes to induce ubiquitylation by Pirh2 or CRL2-KLHDC10 E3 ligases. Here we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails, and structural predictions identify candidate Ala-tail binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.
Collapse
|
30
|
Scavone F, Gumbin S, Da Rosa P, Kopito R. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Proc Natl Acad Sci U S A 2023; 120:e2220340120. [PMID: 37036982 PMCID: PMC10120006 DOI: 10.1073/pnas.2220340120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs.
Collapse
Affiliation(s)
| | - Samantha C. Gumbin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Paul A. Da Rosa
- Department of Biology, Stanford University, Stanford, CA94305
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
31
|
Scavone F, Gumbin SC, DaRosa PA, Kopito RR. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531792. [PMID: 36945571 PMCID: PMC10028864 DOI: 10.1101/2023.03.08.531792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs. Significance Statement UFM1 is a ubiquitin-like protein that is selectively conjugated to the large (60S) subunit of ribosomes bound to the endoplasmic reticulum (ER), but the specific biological function of this modification is unclear. Here, we show that UFMylation facilitates proteasome-mediated degradation of arrest polypeptides (APs) which are generated following splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER. We propose that UFMylation weakens the tightly sealed ribosome-translocon junction, thereby allowing the cytosolic ubiquitin-proteasome and ribosome-associated quality control machineries to access ER-APs.
Collapse
Affiliation(s)
| | - Samantha C Gumbin
- Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford CA, 94305
| | - Paul A DaRosa
- Department of Biology, Stanford University, Stanford CA, 94305
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford CA, 94305
| |
Collapse
|
32
|
Tesina P, Ebine S, Buschauer R, Thoms M, Matsuo Y, Inada T, Beckmann R. Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control. Mol Cell 2023; 83:607-621.e4. [PMID: 36804914 DOI: 10.1016/j.molcel.2023.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.
Collapse
Affiliation(s)
- Petr Tesina
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| | - Shuhei Ebine
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Robert Buschauer
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
33
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|
34
|
Eisenack TJ, Trentini DB. Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Front Mol Biosci 2023; 9:1089825. [PMID: 36660423 PMCID: PMC9846516 DOI: 10.3389/fmolb.2022.1089825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Proteins are versatile molecular machines that control and execute virtually all cellular processes. They are synthesized in a multilayered process requiring transfer of information from DNA to RNA and finally into polypeptide, with many opportunities for error. In addition, nascent proteins must successfully navigate a complex folding-energy landscape, in which their functional native state represents one of many possible outcomes. Consequently, newly synthesized proteins are at increased risk of misfolding and toxic aggregation. To maintain proteostasis-the state of proteome balance-cells employ a plethora of molecular chaperones that guide proteins along a productive folding pathway and quality control factors that direct misfolded species for degradation. Achieving the correct balance between folding and degradation therefore represents a fundamental task for the proteostasis network. While many chaperones act co-translationally, protein quality control is generally considered to be a post-translational process, as the majority of proteins will only achieve their final native state once translation is completed. Nevertheless, it has been observed that proteins can be ubiquitinated during synthesis. The extent and the relevance of co-translational protein degradation, as well as the underlying molecular mechanisms, remain areas of open investigation. Recent studies made seminal advances in elucidating ribosome-associated quality control processes, and how their loss of function can lead to proteostasis failure and disease. Here, we discuss current understanding of the situations leading to the marking of nascent proteins for degradation before synthesis is completed, and the emerging quality controls pathways engaged in this task in eukaryotic cells. We also highlight the methods used to study co-translational quality control.
Collapse
Affiliation(s)
- Tom Joshua Eisenack
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Débora Broch Trentini
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Helton NS, Moon SL. Is bRaQCing bad? New roles for ribosome associated quality control factors in stress granule regulation. Biochem Soc Trans 2022; 50:1715-1724. [PMID: 36484689 PMCID: PMC11368206 DOI: 10.1042/bst20220549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 09/04/2024]
Abstract
Maintenance of proteostasis is of utmost importance to cellular viability and relies on the coordination of many post-transcriptional processes to respond to stressful stimuli. Stress granules (SGs) are RNA-protein condensates that form after translation initiation is inhibited, such as during the integrated stress response (ISR), and may facilitate cellular adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic nascent peptides to target them for degradation. Both SG regulation and the RQC pathway are directly associated with translation regulation, thus it is of no surprise recent developments have demonstrated a connection between them. VCP's function in the stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs to the RQC pathway. Because mutations in genes that are involved in both SG and RQC regulation are associated with degenerative and neurological diseases, understanding the coordination and interregulation of SGs and RQC may shed light on disease mechanisms. This minireview will highlight recent advances in understanding how SGs and the RQC pathway interact in health and disease contexts.
Collapse
Affiliation(s)
- Noah S Helton
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Stephanie L Moon
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
36
|
Lu B. Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection. Front Cell Dev Biol 2022; 10:970654. [PMID: 36187485 PMCID: PMC9515510 DOI: 10.3389/fcell.2022.970654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Translational control at the initiation, elongation, and termination steps exerts immediate effects on the rate as well as the spatiotemporal dynamics of new protein synthesis, shaping the composition of the proteome. Translational control is particularly important for cells under stress as during viral infection or in disease conditions such as cancer and neurodegenerative diseases. Much has been learned about the control mechanisms acting at the translational initiation step under normal or pathological conditions. However, problems during the elongation or termination steps of translation can lead to ribosome stalling and ribosome collision, which will trigger ribosome-associated quality control (RQC) mechanism. Inadequate RQC may lead to the accumulation of faulty translation products that perturb protein homeostasis (proteostasis). Proteostasis signifies a cellular state in which the synthesis, folding, and degradation of proteins are maintained at a homeostatic state such that an intact proteome is preserved. Cellular capacity to preserve proteostasis declines with age, which is thought to contribute to age-related diseases. Proteostasis failure manifested as formation of aberrant protein aggregates, epitomized by the amyloid plaques in Alzheimer's disease (AD), is a defining feature of neurodegenerative diseases. The root cause of the proteostasis failure and protein aggregation is still enigmatic. Here I will review recent studies supporting that faulty translation products resulting from inadequate RQC of translational stalling and ribosome collision during the translation of problematic mRNAs can be the root cause of proteostasis failure and may represent novel therapeutic targets for neurodegenerative diseases. I will also review evidence that translation regulation by RQC is operative in cancer cells and during viral infection. Better understanding of RQC mechanism may lead to novel therapeutic strategies against neurodegenerative diseases, cancer, and viral infections, including the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
37
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|
38
|
Filbeck S, Cerullo F, Pfeffer S, Joazeiro CAP. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell 2022; 82:1451-1466. [PMID: 35452614 PMCID: PMC9034055 DOI: 10.1016/j.molcel.2022.03.038] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Ribosome-associated quality-control (RQC) surveys incomplete nascent polypeptides produced by interrupted translation. Central players in RQC are the human ribosome- and tRNA-binding protein, NEMF, and its orthologs, yeast Rqc2 and bacterial RqcH, which sense large ribosomal subunits obstructed with nascent chains and then promote nascent-chain proteolysis. In canonical eukaryotic RQC, NEMF stabilizes the LTN1/Listerin E3 ligase binding to obstructed ribosomal subunits for nascent-chain ubiquitylation. Furthermore, NEMF orthologs across evolution modify nascent chains by mediating C-terminal, untemplated polypeptide elongation. In eukaryotes, this process exposes ribosome-buried nascent-chain lysines, the ubiquitin acceptor sites, to LTN1. Remarkably, in both bacteria and eukaryotes, C-terminal tails also have an extra-ribosomal function as degrons. Here, we discuss recent findings on RQC mechanisms and briefly review how ribosomal stalling is sensed upstream of RQC, including via ribosome collisions, from an evolutionary perspective. Because RQC defects impair cellular fitness and cause neurodegeneration, this knowledge provides a framework for pathway-related biology and disease studies.
Collapse
Affiliation(s)
- Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Federico Cerullo
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Claudio A P Joazeiro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
39
|
Park J, Lee J, Kim JH, Lee J, Park H, Lim C. ZNF598 co-translationally titrates poly(GR) protein implicated in the pathogenesis of C9ORF72-associated ALS/FTD. Nucleic Acids Res 2021; 49:11294-11311. [PMID: 34551427 PMCID: PMC8565315 DOI: 10.1093/nar/gkab834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
C9ORF72-derived dipeptide repeat proteins have emerged as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). However, the mechanisms underlying their expression are not fully understood. Here, we demonstrate that ZNF598, the rate-limiting factor for ribosome-associated quality control (RQC), co-translationally titrates the expression of C9ORF72-derived poly(GR) protein. A Drosophila genetic screen identified key RQC factors as potent modifiers of poly(GR)-induced neurodegeneration. ZNF598 overexpression in human neuroblastoma cells inhibited the nuclear accumulation of poly(GR) protein and decreased its cytotoxicity, whereas ZNF598 deletion had opposing effects. Poly(GR)-encoding sequences in the reporter RNAs caused translational stalling and generated ribosome-associated translation products, sharing molecular signatures with canonical RQC substrates. Furthermore, ZNF598 and listerin 1, the RQC E3 ubiquitin-protein ligase, promoted poly(GR) degradation via the ubiquitin-proteasome pathway. An ALS-relevant ZNF598R69C mutant displayed loss-of-function effects on poly(GR) expression, as well as on general RQC. Moreover, RQC function was impaired in C9-ALS patient-derived neurons, whereas lentiviral overexpression of ZNF598 lowered their poly(GR) expression and suppressed proapoptotic caspase-3 activation. Taken together, we propose that an adaptive nature of the RQC-relevant ZNF598 activity allows the co-translational surveillance to cope with the atypical expression of pathogenic poly(GR) protein, thereby acquiring a neuroprotective function in C9-ALS/FTD.
Collapse
Affiliation(s)
- Jumin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jongbo Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ji-Hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Heeju Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Park J, Park J, Lee J, Lim C. The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Rep 2021. [PMID: 34488933 PMCID: PMC8505234 DOI: 10.5483/bmbrep.2021.54.9.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Jumin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongmin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
41
|
Takada H, Crowe-McAuliffe C, Polte C, Sidorova ZY, Murina V, Atkinson GC, Konevega AL, Ignatova Z, Wilson DN, Hauryliuk V. RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Res 2021; 49:8355-8369. [PMID: 34255840 PMCID: PMC8373112 DOI: 10.1093/nar/gkab589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan.,Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Zhanna Yu Sidorova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia.,Russian Research Institute of Hematology and Transfusiology of FMBA, 191024 Saint Petersburg, Russia
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Gemma C Atkinson
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia.,Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia.,National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden.,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.,University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| |
Collapse
|
42
|
Howard CJ, Frost A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56:603-620. [PMID: 34233554 DOI: 10.1080/10409238.2021.1938507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translation is the set of mechanisms by which ribosomes decode genetic messages as they synthesize polypeptides of a defined amino acid sequence. While the ribosome has been honed by evolution for high-fidelity translation, errors are inevitable. Aberrant mRNAs, mRNA structure, defective ribosomes, interactions between nascent proteins and the ribosomal exit tunnel, and insufficient cellular resources, including low tRNA levels, can lead to functionally irreversible stalls. Life thus depends on quality control mechanisms that detect, disassemble and recycle stalled translation intermediates. Ribosome-associated Quality Control (RQC) recognizes aberrant ribosome states and targets their potentially toxic polypeptides for degradation. Here we review recent advances in our understanding of RQC in bacteria, fungi, and metazoans. We focus in particular on an unusual modification made to the nascent chain known as a "CAT tail", or Carboxy-terminal Alanine and Threonine tail, and the mechanisms by which ancient RQC proteins catalyze CAT-tail synthesis.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Udagawa T, Seki M, Inada T. Optimized protocol for tRNA identification in the ribosomal complexes from human cell lines. STAR Protoc 2021; 2:100615. [PMID: 34189478 PMCID: PMC8220392 DOI: 10.1016/j.xpro.2021.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we describe a protocol for tRNA identification in the 60S ribosome-nascent peptide complex co-purified with Nuclear Export Mediator Factor (NEMF), a responsible factor for C-terminal alanine and threonine tailing of the nascent peptide. Our protocol is based on regular reverse transcription followed by quantitative Polymerase chain reaction (PCR). Although this method cannot distinguish between amino acid-charged and uncharged and base-modified and unmodified tRNAs, it is a convenient way to estimate the relative level of tRNA species and thus can be useful for researchers. For complete details on the use and execution of this protocol, please refer to Udagawa et al. (2021). Strategy to obtain the ribosomal complex from mammalian cells Purification of the ribosomal complex with sucrose density gradient centrifugation A simple protocol to quantify the levels of individual tRNA species by RT-qPCR
Collapse
Affiliation(s)
- Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 981-8567, Japan
- Corresponding author
| | - Moeka Seki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 981-8567, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 981-8567, Japan
- The institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Corresponding author
| |
Collapse
|
44
|
Yip MCJ, Shao S. Detecting and Rescuing Stalled Ribosomes. Trends Biochem Sci 2021; 46:731-743. [PMID: 33966939 DOI: 10.1016/j.tibs.2021.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.
Collapse
Affiliation(s)
- Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|