1
|
Mishra A, Akkol S, Espinal E, Markowitz N, Tostaeva G, Freund E, Mehta AD, Bickel S. Hippocampal and cortical high-frequency oscillations orchestrate human semantic networks during word list memory. iScience 2025; 28:112171. [PMID: 40235588 PMCID: PMC11999489 DOI: 10.1016/j.isci.2025.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Episodic memory requires the precise coordination between the hippocampus and distributed cortical regions. This may be facilitated by bursts of brain activity called high-frequency oscillations (HFOs). We hypothesized that HFOs activate specific networks during memory retrieval and aimed to describe the electrophysiological properties of HFO-associated activity. To study this, we recorded intracranial electroencephalography while human participants performed a list learning task. Hippocampal HFOs (hHFOs) increased during encoding and retrieval, and these increases correlated with memory performance. During retrieval, hHFOs demonstrated activation of semantic processing regions that were previously active during encoding. This consisted of broadband high-frequency activity (HFA) and cortical HFOs. HFOs in the anterior temporal lobe, a major semantic hub, co-occurred with hHFOs, particularly during retrieval. These coincident HFOs were associated with greater cortical HFA and cortical theta bursts. Hence, HFOs may support synchronization of activity across distributed nodes of the hippocampal-cortical memory network.
Collapse
Affiliation(s)
- Akash Mishra
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Serdar Akkol
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Elizabeth Espinal
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Noah Markowitz
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gelana Tostaeva
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Elisabeth Freund
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ashesh D. Mehta
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Stephan Bickel
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| |
Collapse
|
2
|
Mishra A, Tostaeva G, Nentwich M, Espinal E, Markowitz N, Winfield J, Freund E, Gherman S, Mehta AD, Bickel S. Motifs of human hippocampal and cortical high frequency oscillations structure processing and memory of naturalistic stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617305. [PMID: 39416218 PMCID: PMC11483033 DOI: 10.1101/2024.10.08.617305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The discrete events of our narrative experience are organized by the neural substrate that underlies episodic memory. This narrative process is segmented into discrete units by event boundaries. This permits a replay process that acts to consolidate each event into a narrative memory. High frequency oscillations (HFOs) are a potential mechanism for synchronizing neural activity during these processes. Here, we use intracranial recordings from participants viewing and freely recalling a naturalistic stimulus. We show that hippocampal HFOs increase following event boundaries and that coincident hippocampal-cortical HFOs (co-HFOs) occur in cortical regions previously shown to underlie event segmentation (inferior parietal, precuneus, lateral occipital, inferior frontal cortices). We also show that event-specific patterns of co-HFOs that occur during event viewing re-occur following the subsequent three event boundaries (in decaying fashion) and also during recall. This is consistent with models that support replay as a mechanism for memory consolidation. Hence, HFOs may coordinate activity across brain regions serving widespread event segmentation, encode naturalistic memory, and bind representations to assemble memory of a coherent, continuous experience.
Collapse
|
3
|
Schreiner T, Griffiths BJ, Kutlu M, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Spindle-locked ripples mediate memory reactivation during human NREM sleep. Nat Commun 2024; 15:5249. [PMID: 38898100 PMCID: PMC11187142 DOI: 10.1038/s41467-024-49572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Merve Kutlu
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Sakon JJ, Halpern DJ, Schonhaut DR, Kahana MJ. Human Hippocampal Ripples Signal Encoding of Episodic Memories. J Neurosci 2024; 44:e0111232023. [PMID: 38233218 PMCID: PMC10883616 DOI: 10.1523/jneurosci.0111-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Direct human brain recordings have confirmed the presence of high-frequency oscillatory events, termed ripples, during awake behavior. While many prior studies have focused on medial temporal lobe (MTL) ripples during memory retrieval, here we investigate ripples during memory encoding. Specifically, we ask whether ripples during encoding predict whether and how memories are subsequently recalled. Detecting ripples from MTL electrodes implanted in 116 neurosurgical participants (n = 61 male) performing a verbal episodic memory task, we find that encoding ripples do not distinguish recalled from not recalled items in any MTL region, even as high-frequency activity during encoding predicts recall in these same regions. Instead, hippocampal ripples increase during encoding of items that subsequently lead to recall of temporally and semantically associated items during retrieval, a phenomenon known as clustering. This subsequent clustering effect arises specifically when hippocampal ripples co-occur during encoding and retrieval, suggesting that ripples mediate both encoding and reinstatement of episodic memories.
Collapse
Affiliation(s)
- John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - David J Halpern
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Staresina BP, Niediek J, Borger V, Surges R, Mormann F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 2023; 26:1429-1437. [PMID: 37429914 PMCID: PMC10400429 DOI: 10.1038/s41593-023-01381-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Learning and plasticity rely on fine-tuned regulation of neuronal circuits during offline periods. An unresolved puzzle is how the sleeping brain, in the absence of external stimulation or conscious effort, coordinates neuronal firing rates (FRs) and communication within and across circuits to support synaptic and systems consolidation. Using intracranial electroencephalography combined with multiunit activity recordings from the human hippocampus and surrounding medial temporal lobe (MTL) areas, we show that, governed by slow oscillation (SO) up-states, sleep spindles set a timeframe for ripples to occur. This sequential coupling leads to a stepwise increase in (1) neuronal FRs, (2) short-latency cross-correlations among local neuronal assemblies and (3) cross-regional MTL interactions. Triggered by SOs and spindles, ripples thus establish optimal conditions for spike-timing-dependent plasticity and systems consolidation. These results unveil how the sequential coupling of specific sleep rhythms orchestrates neuronal processing and communication during human sleep.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Doostmohammadi J, Gieselmann MA, van Kempen J, Lashgari R, Yoonessi A, Thiele A. Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proc Natl Acad Sci U S A 2023; 120:e2210698120. [PMID: 36696442 PMCID: PMC9945997 DOI: 10.1073/pnas.2210698120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/22/2022] [Indexed: 01/26/2023] Open
Abstract
Sharp-wave ripples (SWRs) are highly synchronous neuronal activity events. They have been predominantly observed in the hippocampus during offline states such as pause in exploration, slow-wave sleep, and quiescent wakefulness. SWRs have been linked to memory consolidation, spatial navigation, and spatial decision-making. Recently, SWRs have been reported during visual search, a form of remote spatial exploration, in macaque hippocampus. However, the association between SWRs and multiple forms of awake conscious and goal-directed behavior is unknown. We report that ripple activity occurs in macaque visual areas V1 and V4 during focused spatial attention. The occurrence of ripples is modulated by stimulus characteristics, increased by attention toward the receptive field, and by the size of the attentional focus. During attention cued to the receptive field, the monkey's reaction time in detecting behaviorally relevant events was reduced by ripples. These results show that ripple activity is not limited to hippocampal activity during offline states, rather they occur in the neocortex during active attentive states and vigilance behaviors.
Collapse
Affiliation(s)
- Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran13, Iran
| | - Marc Alwin Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran13, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| |
Collapse
|
9
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories. Analyzing electrophysiological MTL recordings from 245 neurosurgical participants performing episodic recall tasks, we find that the rate of hippocampal ripples rises just prior to the free recall of recently formed memories. This prerecall ripple effect (PRE) is stronger in the CA1 and CA3/dentate gyrus (CA3/DG) subfields of the hippocampus than the neighboring MTL regions entorhinal and parahippocampal cortex. PRE is also stronger prior to the retrieval of temporally and semantically clustered, as compared with unclustered, recalls, indicating the involvement of ripples in contextual reinstatement, which is a hallmark of episodic memory.
Collapse
|
11
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|