1
|
Chaudhury S, D'Amico T, Blagg BSJ. The Hsp90β Isoform: An Attractive Target for Drug Development. Med Res Rev 2025. [PMID: 40293270 DOI: 10.1002/med.22114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The beta isoform of 90 kDa heat shock protein (Hsp90β) plays a critical role in maintaining cellular proteostasis by assisting in the folding and refolding of proteins, which is essential for both normal cellular function and stress response. It is constitutively expressed in mammalian cells, differentiating it from the inducible Hsp90α isoform. Hsp90β's involvement in diverse cellular processes, such as signal transduction, cell cycle control, and apoptosis, underscores its significant role in various diseases, including cancer and neurodegenerative disorders. The isoform-specific functions of Hsp90β and its interaction with unique client proteins make it a promising target for therapeutic intervention, particularly in the development of selective inhibitors that avoid the adverse effects observed with pan-Hsp90 inhibitors. This review delves into the structural and functional intricacies of Hsp90β, its role in disease, and the potential for selective drug development.
Collapse
Affiliation(s)
- Subhabrata Chaudhury
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Terin D'Amico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
3
|
Ohigashi N, Hirayama S, Yashiroda H, Murata S. Vacuolar Sts1 Degradation-Induced Cytoplasmic Proteasome Translocation Restores Cell Proliferation. Genes Cells 2025; 30:e70004. [PMID: 39904745 DOI: 10.1111/gtc.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast Saccharomyces cerevisiae. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.
Collapse
Affiliation(s)
- Noritaka Ohigashi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Jia X, Wang Y, Jiang M, Chen DD, Shang G, Liu B, Xue M, Lang Y, Zhou G, Dong Y, Zhang F, Peng X, Hu Y. HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy. J Biol Chem 2025; 301:108126. [PMID: 39725039 PMCID: PMC11787647 DOI: 10.1016/j.jbc.2024.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, age-related macular disease, and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear. Here, we find that RDH5 undergoes degradation via the autophagy-lysosomal pathway, and its stability is regulated by interacting with HSP90. Deletion of HSP90α or HSP90β by CRISPR-Cas9 or inhibition of HSP90 activity by IPI-504 downregulates RDH5 protein level, but not its mRNA expression, and this downregulation is restored by autophagic inhibitors (3-MA, CQ, and Baf-A1) and siRNA of ATG5 or ATG7, but not by the proteasome inhibitor MG132. RDH5 can physically interact with SQSTM1/P62, and this interaction is enhanced in HSP90-deficient cells as well as in CQ-treated cells. Knocking down SQSTM1/P62 by siRNA induces RDH5 protein accumulation. Moreover, HSP90, RDH5, and Calnexin form a complex through intermolecular interactions. Deficiency of HSP90α or HSP90β dissociates RDH5 from Calnexin and increases RDH5 translocation from the endoplasmic reticulum to the cytosol. Taken together, we propose that dysfunction of HSP90 leads to RDH5 release from Calnexin in the endoplasmic reticulum into the cytosol, where it binds to the adaptor SQSTM1/P62 for degradation in the autolysosome. RDH5 is a novel client candidate of HSP90. The downregulation of RDH5 may be responsible for the nyctalopia side effect noted in cancer patients receiving HSP90 inhibitor treatment currently in the clinical trial.
Collapse
Affiliation(s)
- Xiaolin Jia
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Mingjun Jiang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Chen
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Baixue Liu
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Youfei Lang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guiling Zhou
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yichen Dong
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fengyan Zhang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Yanzhong Hu
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; The Joint National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
5
|
Baker HA, Bernardini JP, Csizmók V, Madero A, Kamat S, Eng H, Lacoste J, Yeung FA, Comyn S, Hui E, Calabrese G, Raught B, Taipale M, Mayor T. The co-chaperone DNAJA2 buffers proteasomal degradation of cytosolic proteins with missense mutations. J Cell Sci 2025; 138:jcs262019. [PMID: 39618332 DOI: 10.1242/jcs.262019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Mutations can disrupt the native function of protein by causing misfolding, which is generally handled by an intricate protein quality control network. To better understand the triaging mechanisms for misfolded cytosolic proteins, we screened a human mutation library to identify a panel of unstable mutations. The degradation of these mutated cytosolic proteins is largely dependent on the ubiquitin proteasome system. Using BioID proximity labelling, we found that the co-chaperones DNAJA1 and DNAJA2 are key interactors with one of the mutated proteins. Notably, the absence of DNAJA2 increases the turnover of the mutant but not the wild-type protein. Our work indicates that specific missense mutations in cytosolic proteins can promote enhanced interactions with molecular chaperones. Assessment of the broader panel of cytosolic mutant proteins shows that the co-chaperone DNAJA2 exhibits two distinct behaviours - acting to stabilize a wide array of cytosolic proteins, including wild-type variants, and to specifically 'buffer' some mutant proteins to reduce their turnover. Our work illustrates how distinct elements of the protein homeostasis network are utilized in the presence of a cytosolic misfolded protein.
Collapse
Affiliation(s)
- Heather A Baker
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Edwin SH Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan P Bernardini
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Veronika Csizmók
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Angel Madero
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shriya Kamat
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Edwin SH Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hailey Eng
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular & Biomedical Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Faith A Yeung
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sophie Comyn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elizabeth Hui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gaetano Calabrese
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular & Biomedical Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Edwin SH Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Rutledge BS, Kim YJ, McDonald DW, Jurado-Coronel JC, Prado MAM, Johnson JL, Choy WY, Duennwald ML. Stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) sequesters misfolded proteins during stress. FEBS J 2024. [PMID: 39739753 DOI: 10.1111/febs.17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others. Sti1 and Aha1 control the ATPase activity of Hsp90, but Sti1 also facilitates the transfer of client proteins from Hsp70 to Hsp90, thus connecting these two major branches of protein quality control. We find that misbalanced expression of Sti1 and Aha1 in yeast and mammalian cells causes severe growth defects. Also, deletion of STI1 causes an accumulation of soluble misfolded ubiquitinated proteins and a strong activation of the heat shock response. We discover that, during proteostatic stress, Sti1 forms cytoplasmic inclusions in yeast and mammalian cells that overlap with misfolded proteins. Our work indicates a key role of Sti1 in proteostasis independent of its Hsp90 ATPase regulatory functions by sequestering misfolded proteins during stress.
Collapse
Affiliation(s)
- Benjamin S Rutledge
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Young J Kim
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Donovan W McDonald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Juan C Jurado-Coronel
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
- Robarts Research Institute and Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Saouli I, Abrane R, Bidjou-Haiour C, Boudiba S. Insight into the structural and dynamic properties of novel HSP90 inhibitors through DFT calculations and molecular dynamics simulations. J Mol Model 2024; 30:420. [PMID: 39601982 DOI: 10.1007/s00894-024-06214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT Heat-shock proteins (HSPs), particularly HSP90, are critical molecular chaperones that maintain protein stability, especially in cancer cells. Elevated HSP90 levels in tumors aid in oncogenic protein stabilization. This study focuses on developing potent, selective HSP90 inhibitors to disrupt its chaperone function, targeting cancer cell survival. Using a de novo hybridization approach, we designed novel inhibitors by integrating structural fragments from a known HSP90-binding drug, leading to the creation of hybrid compounds C1, C2, and C3. A 300 ns molecular dynamics simulation of each system revealed that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound, MEY. RMSD, RMSF, Rg, SASA, and MM-PBSA metrics supported these findings. DCCM and FEL analyses confirmed that the inhibitors did not alter HSP90's initial configuration. Further DFT calculations with the B3LYP/6-311 + + (d,p) basis set were conducted to evaluate frontier molecular orbitals, MEP surfaces, ELF, LOL maps, TDOS and PDOS. The results indicated that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound MEY. These findings affirm the potential of C1, C2, and C3 as new anti-cancer therapies. Our approach demonstrates a promising strategy for developing selective HSP90 inhibitors that maintain the protein's functional integrity while disrupting its oncogenic role, paving the way for further preclinical evaluation of these novel compounds. METHODS Maestro 11.8, Discovery Studio Visualizer, Gromacs-2023, Gaussian 16, and online platforms like SwissADME and ProTox-II were utilized. Fragments generated from eight known HSP90-binding drugs were subjected to SP-docking, leading to 170 fragments. The highest-scoring fragments were merged using the breed panel to create new HSP90 inhibitors. XP-docking and ADMET analyses identified C1, C2, and C3 as the most promising candidates. These compounds were selected for a 300 ns dynamic simulation and subsequent DFT calculations.
Collapse
Affiliation(s)
- Ibtissam Saouli
- Department of Chemistry, Laboratory of Organic Synthesis and Modeling Group (LOMOP), University of Badji-Mokhtar, 23000, Annaba, Algeria.
- Department of Chemistry, Laboratory of Applied Chemistry and Renewable Energies (LACRE), University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria.
| | - Rahma Abrane
- Department of Chemistry, Laboratory of Theoretical and Applied Physics, University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria
| | - Chahra Bidjou-Haiour
- Department of Chemistry, Laboratory of Organic Synthesis and Modeling Group (LOMOP), University of Badji-Mokhtar, 23000, Annaba, Algeria
| | - Sameh Boudiba
- Department of Chemistry, Laboratory of Applied Chemistry and Renewable Energies (LACRE), University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria
| |
Collapse
|
8
|
Keshavarzipour F, Abbasi M, Khorsandi Z, Ardestani M, Sadeghi-Aliabadi H. Design, synthesis and biological studies of new isoxazole compounds as potent Hsp90 inhibitors. Sci Rep 2024; 14:28017. [PMID: 39543364 PMCID: PMC11564562 DOI: 10.1038/s41598-024-79051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Heat shock protein 90 (Hsp90), a molecular chaperone, contributes to the preservation of folding, structure, stability, and function proteins. In this study, novel compounds comprising isoxazole structure were designed, synthesized and their potential ability as Hsp90 inhibitors was validated through docking studies. The active site-based compounds were prepared through a multi-step synthesis process and their chemical structures were characterized employing FT-IR, NMR, and mass spectrometry analysis. Cytotoxic and Hsp90 inhibition activities of synthesized compounds were assessed by MTT assay and ELISA kit, respectively. Based on the obtained results, compound 5 exhibited the highest cytotoxicity (IC50; 14 µM) against cancer cells and reduced Hsp90 expression from 5.54 ng/mL in untreated (normal cells) to 1.56 ng/mL in cancer cells. Moreover, molecular dynamics (MD) simulation results indicated its high affinity to target protein and approved its excellent stability which is essential for exerting an inhibitory effect on cancer cell proliferation.
Collapse
Affiliation(s)
- Fariba Keshavarzipour
- Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-7346, Isfahan, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, 791969-1982, Bandar Abbas, Iran
| | - Zahra Khorsandi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Mina Ardestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran.
| |
Collapse
|
9
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
11
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
12
|
Delrue C, Dendooven A, Vandendriessche A, Speeckaert R, De Bruyne S, Speeckaert MM. Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes. Int J Mol Sci 2024; 25:5875. [PMID: 38892061 PMCID: PMC11172584 DOI: 10.3390/ijms25115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Renal amyloidosis is a set of complex disorders characterized by the deposition of amyloid proteins in the kidneys, which causes gradual organ damage and potential kidney failure. Recent developments in diagnostic methods, particularly mass spectrometry and proteome profiling, have greatly improved the accuracy of amyloid typing, which is critical for disease management. These technologies provide extensive insights into the specific proteins involved, allowing for more targeted treatment approaches and better patient results. Despite these advances, problems remain, owing to the heterogeneous composition of amyloid proteins and the varying efficacy of treatments based on amyloid type. Access to sophisticated diagnostics and therapy varies greatly, highlighting the global difference in renal amyloidosis management. Future research is needed to investigate next-generation sequencing and gene-editing technologies, like clustered regularly interspaced short palindromic repeats (CRISPR), which promise more profound insights into the genetic basis of amyloidosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium; (A.D.); (A.V.)
- Faculty of Medicine, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
13
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
14
|
Charalampous C, Dasari S, McPhail E, Theis JD, Vrana JA, Dispenzieri A, Leung N, Muchtar E, Gertz M, Ramirez-Alvarado M, Kourelis T. A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis. Kidney Int 2024; 105:484-495. [PMID: 38096952 PMCID: PMC10922603 DOI: 10.1016/j.kint.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The mechanisms of tissue damage in kidney amyloidosis are not well described. To investigate this further, we used laser microdissection-mass spectrometry to identify proteins deposited in amyloid plaques (expanded proteome) and proteins overexpressed in plaques compared to controls (plaque-specific proteome). This study encompassed 2650 cases of amyloidosis due to light chain (AL), heavy chain (AH), leukocyte chemotactic factor-2-type (ALECT2), secondary (AA), fibrinogen (AFib), apo AIV (AApoAIV), apo CII (AApoCII) and 14 normal/disease controls. We found that AFib, AA, and AApoCII have the most distinct proteomes predominantly driven by increased complement pathway proteins. Clustering of cases based on the expanded proteome identified two ALECT2 and seven AL subtypes. The main differences within the AL and ALECT2 subtypes were driven by complement proteins and, for AL only, 14-3-3 family proteins (a family of structurally similar phospho-binding proteins that regulate major cellular functions) widely implicated in kidney tissue dysfunction. The kidney AL plaque-specific proteome consisted of 24 proteins, including those implicated in kidney damage (α1 antitrypsin and heat shock protein β1). Hierarchical clustering of AL cases based on their plaque-specific proteome identified four clusters, of which one was associated with improved kidney survival and was characterized by higher overall proteomic content and 14-3-3 proteins but lower levels of light chains and most signature proteins. Thus, our results suggest that there is significant heterogeneity across and within amyloid types, driven predominantly by complement proteins, and that the plaque protein burden does not correlate with amyloid toxicity.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
15
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
16
|
Ouassaf M, Bourougaa L, Al-Mijalli SH, Abdallah EM, Bhat AR, A. Kawsar SM. Marine-Derived Compounds as Potential Inhibitors of Hsp90 for Anticancer and Antimicrobial Drug Development: A Comprehensive In Silico Study. Molecules 2023; 28:8074. [PMID: 38138564 PMCID: PMC10871121 DOI: 10.3390/molecules28248074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Marine compounds constitute a diverse and invaluable resource for the discovery of bioactive substances with promising applications in the pharmaceutical development of anti-inflammatory and antibacterial agents. In this study, a comprehensive methodology was employed, encompassing pharmacophore modeling, virtual screening, in silico ADMET assessment (encompassing aspects of absorption, distribution, metabolism, excretion, and toxicity), and molecular dynamics simulations. These methods were applied to identify new inhibitors targeting the Hsp90 protein (heat shock protein 90), commencing with a diverse assembly of compounds sourced from marine origins. During the virtual screening phase, an extensive exploration was conducted on a dataset comprising 31,488 compounds sourced from the CMNPD database, characterized by a wide array of molecular structures. The principal objective was the development of structure-based pharmacophore models, a valuable approach when the pool of known ligands is limited. The pharmacophore model DDRRR was successfully constructed within the active sites of the Hsp90 crystal structure. Subsequent docking studies led to the identification of six compounds (CMNPD 22591, 9335, 10015, 360799, 15115, and 20988) demonstrating substantial binding affinities, each with values below -8.3 kcal/mol. In the realm of in silico ADMET predictions, five of these compounds exhibited favorable pharmacokinetic properties. Furthermore, molecular dynamics simulations and total binding energy calculations using MM-PBSA indicated that these marine-derived compounds formed exceptionally stable complexes with the Hsp90 receptor over a 100-nanosecond simulation period. These findings underscore the considerable potential of these novel marine compounds as promising candidates for anticancer and antimicrobial drug development.
Collapse
Affiliation(s)
- Mebarka Ouassaf
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 707000, Algeria;
| | - Lotfi Bourougaa
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 707000, Algeria;
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| |
Collapse
|
17
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
18
|
Somers DE. HSP90 in morphogenesis: taking the heat and keeping the dark. THE NEW PHYTOLOGIST 2023; 239:1157-1159. [PMID: 37292049 PMCID: PMC10524854 DOI: 10.1111/nph.19062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article is a Commentary on Zeng et al. (2023), 239: 1253–1265.
Collapse
Affiliation(s)
- David E. Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Sontag EM, Morales-Polanco F, Chen JH, McDermott G, Dolan PT, Gestaut D, Le Gros MA, Larabell C, Frydman J. Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT. Nat Cell Biol 2023; 25:699-713. [PMID: 37081164 DOI: 10.1038/s41556-023-01128-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Effective protein quality control (PQC), essential for cellular health, relies on spatial sequestration of misfolded proteins into defined inclusions. Here we reveal the coordination of nuclear and cytoplasmic spatial PQC. Cytoplasmic misfolded proteins concentrate in a cytoplasmic juxtanuclear quality control compartment, while nuclear misfolded proteins sequester into an intranuclear quality control compartment (INQ). Particle tracking reveals that INQ and the juxtanuclear quality control compartment converge to face each other across the nuclear envelope at a site proximal to the nuclear-vacuolar junction marked by perinuclear ESCRT-II/III protein Chm7. Strikingly, convergence at nuclear-vacuolar junction contacts facilitates VPS4-dependent vacuolar clearance of misfolded cytoplasmic and nuclear proteins, the latter entailing extrusion of nuclear INQ into the vacuole. Finding that nuclear-vacuolar contact sites are cellular hubs of spatial PQC to facilitate vacuolar clearance of nuclear and cytoplasmic inclusions highlights the role of cellular architecture in proteostasis maintenance.
Collapse
Affiliation(s)
- Emily M Sontag
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Dolan
- Department of Biology, Stanford University, Stanford, CA, USA
- Quantitative Virology and Evolution Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mark A Le Gros
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Krämer L, Dalheimer N, Räschle M, Storchová Z, Pielage J, Boos F, Herrmann JM. MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol. EMBO J 2023; 42:e112309. [PMID: 36704946 PMCID: PMC10068336 DOI: 10.15252/embj.2022112309] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Lena Krämer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Niko Dalheimer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Cellular BiochemistryMax Planck Institute of BiochemistryMartinsriedGermany
| | - Markus Räschle
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Zuzana Storchová
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Jan Pielage
- Zoology and NeurobiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | | |
Collapse
|
21
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes. Cell Mol Life Sci 2022; 79:454. [PMID: 35900595 PMCID: PMC9330963 DOI: 10.1007/s00018-022-04483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Human heat-shock protein 90 (HSP90) has four functional domains, including NH2-terminal (N), charged linker region (LR), middle (M) and COOH-terminal (C) domains. In kidney stone disease (or nephrolithiasis/urolithiasis), HSP90 serves as a receptor for calcium oxalate monohydrate (COM), which is the most common crystal to form kidney stones. Nevertheless, roles of HSP90 and its four domains in kidney stone formation remained unclear and under-investigated. We thus examined and compared their effects on COM crystals during physical (crystallization, growth and aggregation) and biological (crystal–cell adhesion and crystal invasion through extracellular matrix (ECM)) pathogenic processes of kidney stone formation. The analyses revealed that full-length (FL) HSP90 obviously increased COM crystal size and abundance during crystallization and markedly promoted crystal growth, aggregation, adhesion onto renal cells and ECM invasion. Comparing among four individual domains, N and C domains exhibited the strongest promoting effects, whereas LR domain had the weakest promoting effects on COM crystals. In summary, our findings indicate that FL-HSP90 and its four domains (N, LR, M and C) promote COM crystallization, crystal growth, aggregation, adhesion onto renal cells and invasion through the ECM, all of which are the important physical and biological pathogenic processes of kidney stone formation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
22
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
23
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|