1
|
Rafiq M, Hu C, Gao X, Wang Z, Schenkman S, Merdes A, Liu X. Decoding dynamic molecular interactions in cells. Cell Biol Int 2025; 49:121-128. [PMID: 39688019 DOI: 10.1002/cbin.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Mussarat Rafiq
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Chengcheng Hu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhikai Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS & Université Toulouse III, Toulouse, France
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Babushkina NP, Nikolaeva AM, Dolbnya AD, Shavrak VE, Ryabov VV. The role of SELE gene polymorphism in ST-elevation myocardial infarction. Vavilovskii Zhurnal Genet Selektsii 2025; 29:135-143. [PMID: 40144370 PMCID: PMC11937004 DOI: 10.18699/vjgb-25-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 03/28/2025] Open
Abstract
Ischemic heart disease (IHD) is an important medical and social problem. ST-elevation myocardial infarction (STEMI) is the most severe form of IHD, affecting all layers of the heart muscle. One of the diagnostic criteria for endothelial dysfunction in myocardial infarction is the level of sE-selectin, a cell adhesion molecule that recruits neutrophils and induces neutrophil inflammation. The aim of this study is to investigate intronic polymorphisms rs5353, rs3917412 and rs1534904 of the E-selectin coding gene SELE in patients with STEMI. We have analyzed a group of patients with STEMI (n = 74) and a population sample of Tomsk (n = 136) as the control group. The frequencies of the rs5353 genotypes in the SELE gene have shown statistically significant differences between patients and the control sample (p = 0.004). The CC genotype is a predisposing factor to STEMI (OR = 6.93, CI:95 % (1.84-26.04), χ2 = 8.69, p = 0.002). The analyzed markers were not studied previously in cardiovascular diseases (CVDs) and were rarely involved in association studies at all; there is no information on these SNPs in the leading databases. At the same time, all three variants, according to the RegulomeDB classification, belong to the functional class 1f, and are highly likely to have regulatory potential relative not only to the SELE gene, but also to other genes in the nearby region. The analysis of the functional significance of the studied markers has shown the presence of a region more extensive than one gene, which is co-regulated by the studied nucleotide substitutions. The association of rs5353 with STEMI identified in this study once again confirms the involvement of the SELE gene in the pathogenesis of CVDs. It is possible that this entire region of the genome may be involved indirectly in the pathogenesis of CVD through the systems of inflammation, immune response and DNA repair.
Collapse
Affiliation(s)
- N P Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A M Nikolaeva
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A D Dolbnya
- Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| | | | - V V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia Tomsk State University, Tomsk, Russia
| |
Collapse
|
3
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
5
|
Zeba A, Rajalingam A, Sekar K, Ganjiwale A. Machine learning-based gene expression biomarkers to distinguish Zika and Dengue virus infections: implications for diagnosis. Virusdisease 2024; 35:446-461. [PMID: 39464736 PMCID: PMC11502647 DOI: 10.1007/s13337-024-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/19/2024] [Indexed: 10/29/2024] Open
Abstract
Zika virus (ZIKV) and Dengue virus (DENV) infections cause severe disease in humans and are significant socio-economic burden worldwide. These flavivirus infections are difficult to diagnose serologically due to antigenic overlap. The phylogenetic analysis shows that ZIKV clusters with DENVs at a higher node of the phylogenetic tree with significant genomic and structural similarity. Our study aims to identify gene biomarkers for the classification of Dengue and Zika viral infections using machine learning algorithms and bioinformatics analysis. The gene expression count matrix for single-cell RNA sequencing dataset GSE110496 was analyzed using binary classifiers, namely Logistic regression, Support Vector Machines, Random Forest, and Decision trees. The GSE110496 dataset represents a unique study of the transcriptional and translational dynamics of DENV and ZIKV infections at 4-, 12-, 24-, and 48-h time points for human hepatoma (Huh7) cells. Out of which 24-h time point has been analyzed in this study, at the optimal threshold of viral molecules. Feature selection was performed using two different approaches Random Forest Classifier (RFC) for gene ranking and Recursive Feature Elimination (RFE). Out of which RFE, showed more accuracy and precision. The classification accuracy of 89.4% and the precision of 90% were obtained using selected 10 gene features. SCY1 Like Pseudokinase 3 (SCYL3), Chromosome 1 Open Reading Frame 112 (C1orf112), Complement factor H (CFH), Heme-binding protein 1 (HEBP1), Cadherin 1 (CDH1), Nibrin (NBN), Histone deacetylase 5 (HDAC5), nuclear receptor subfamily 0, group B, member 2 (NR0B2), Annexin A9 (ANXA9) and Alcohol dehydrogenase 6 (ADH6) are the proposed gene biomarkers in this study. The functional analysis of the reported biomarkers was performed using KEGG and GO with the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt). The relationship of the selected biomarkers with DENV and ZIKV infections analyzed using a gene-gene interaction network showed important interactions for viral entry, replication, translation, and metabolic pathways. These biomarkers are potential diagnostic markers for DENV and ZIKV infections based on machine learning analysis and need further experimental validation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00885-8.
Collapse
Affiliation(s)
- Ayesha Zeba
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| | - Aruna Rajalingam
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-Computing, Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Anjali Ganjiwale
- Department of Life Science, Bangalore University, Bangalore, Karnataka 560056 India
| |
Collapse
|
6
|
Bellah SF, Xiong F, Dou Z, Yang F, Liu X, Yao X, Gao X, Zhang L. PLK1 phosphorylation of ZW10 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae008. [PMID: 38402459 PMCID: PMC11328731 DOI: 10.1093/jmcb/mjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that polo-like kinase 1 (PLK1) dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle assembly checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited zeste white 10 (ZW10) phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
7
|
Tsaridou S, van Vugt MATM. FIRRM and FIGNL1: partners in the regulation of homologous recombination. Trends Genet 2024; 40:467-470. [PMID: 38494375 DOI: 10.1016/j.tig.2024.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
DNA repair through homologous recombination (HR) is of vital importance for maintaining genome stability and preventing tumorigenesis. RAD51 is the core component of HR, catalyzing the strand invasion and homology search. Here, we highlight recent findings on FIRRM and FIGNL1 as regulators of the dynamics of RAD51.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wu F, Akbar H, Wang C, Yuan X, Dou Z, Mullen M, Niu L, Zhang L, Zang J, Wang Z, Yao X, Song X, Liu X. Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 15:mjad061. [PMID: 37777834 PMCID: PMC11181942 DOI: 10.1093/jmcb/mjad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.
Collapse
Affiliation(s)
- Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| |
Collapse
|
9
|
Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, Sun Y, Qiu Y, Huang L, Qin Q, Cui X, Wu M, Liu M. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res 2023; 42:342. [PMID: 38102722 PMCID: PMC10722681 DOI: 10.1186/s13046-023-02928-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.
Collapse
Affiliation(s)
- Shaojie Cheng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yilu Qin
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Luyi Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
10
|
Zhou Z, Yang H, Liang X, Zhou T, Zhang T, Yang Y, Wang J, Wang W. C1orf112 teams up with FIGNL1 to facilitate RAD51 filament disassembly and DNA interstrand cross-link repair. Cell Rep 2023; 42:112907. [PMID: 37515771 DOI: 10.1016/j.celrep.2023.112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.
Collapse
Affiliation(s)
- Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinxin Liang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
11
|
Pinedo-Carpio E, Dessapt J, Beneyton A, Sacre L, Bérubé MA, Villot R, Lavoie EG, Coulombe Y, Blondeau A, Boulais J, Malina A, Luo VM, Lazaratos AM, Côté JF, Mallette FA, Guarné A, Masson JY, Fradet-Turcotte A, Orthwein A. FIRRM cooperates with FIGNL1 to promote RAD51 disassembly during DNA repair. SCIENCE ADVANCES 2023; 9:eadf4082. [PMID: 37556550 PMCID: PMC10411901 DOI: 10.1126/sciadv.adf4082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.
Collapse
Affiliation(s)
- Edgar Pinedo-Carpio
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Julien Dessapt
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Adèle Beneyton
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lauralicia Sacre
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Marie-Anne Bérubé
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Romain Villot
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
| | - Elise G. Lavoie
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yan Coulombe
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Andréanne Blondeau
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
| | - Vincent M. Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anna-Maria Lazaratos
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Frédérick A. Mallette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amélie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC H4A 3T2, Canada
| |
Collapse
|
12
|
Stok C, Tsaridou S, van den Tempel N, Everts M, Wierenga E, Bakker FJ, Kok Y, Alves IT, Jae LT, Raas MWD, Huis In 't Veld PJ, de Boer HR, Bhattacharya A, Karanika E, Warner H, Chen M, van de Kooij B, Dessapt J, Ter Morsche L, Perepelkina P, Fradet-Turcotte A, Guryev V, Tromer EC, Chan KL, Fehrmann RSN, van Vugt MATM. FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics. Cell Rep 2023; 42:112668. [PMID: 37347663 DOI: 10.1016/j.celrep.2023.112668] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Joint DNA molecules are natural byproducts of DNA replication and repair. Persistent joint molecules give rise to ultrafine DNA bridges (UFBs) in mitosis, compromising sister chromatid separation. The DNA translocase PICH (ERCC6L) has a central role in UFB resolution. A genome-wide loss-of-function screen is performed to identify the genetic context of PICH dependency. In addition to genes involved in DNA condensation, centromere stability, and DNA-damage repair, we identify FIGNL1-interacting regulator of recombination and mitosis (FIRRM), formerly known as C1orf112. We find that FIRRM interacts with and stabilizes the AAA+ ATPase FIGNL1. Inactivation of either FIRRM or FIGNL1 results in UFB formation, prolonged accumulation of RAD51 at nuclear foci, and impaired replication fork dynamics and consequently impairs genome maintenance. Combined, our data suggest that inactivation of FIRRM and FIGNL1 dysregulates RAD51 dynamics at replication forks, resulting in persistent DNA lesions and a dependency on PICH to preserve cell viability.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Stavroula Tsaridou
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Femke J Bakker
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Inês Teles Alves
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Maximilian W D Raas
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences, Uppsalalaan 8, 3584CT Utrecht, the Netherlands; Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Eleftheria Karanika
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Harry Warner
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van de Kooij
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Julien Dessapt
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Université Laval, Québec, QC GIR 3S3, Canada
| | - Lars Ter Morsche
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Polina Perepelkina
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Amelie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Université Laval, Québec, QC GIR 3S3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Kok-Lung Chan
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| |
Collapse
|
13
|
Mazouzi A, Moser SC, Abascal F, van den Broek B, Del Castillo Velasco-Herrera M, van der Heijden I, Hekkelman M, Drenth AP, van der Burg E, Kroese LJ, Jalink K, Adams DJ, Jonkers J, Brummelkamp TR. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. SCIENCE ADVANCES 2023; 9:eadf4409. [PMID: 37256941 PMCID: PMC10413679 DOI: 10.1126/sciadv.adf4409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sarah C. Moser
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Bram van den Broek
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
- BioImaging Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Ingrid van der Heijden
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Paulien Drenth
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lona J. Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Jos Jonkers
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
14
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
15
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
16
|
Sedzro DM, Yuan X, Mullen M, Ejaz U, Yang T, Liu X, Song X, Tang YC, Pan W, Zou P, Gao X, Wang D, Wang Z, Dou Z, Liu X, Yao X. Phosphorylation of CENP-R by Aurora B regulates kinetochore-microtubule attachment for accurate chromosome segregation. J Mol Cell Biol 2022; 14:6693714. [PMID: 36069839 PMCID: PMC9802239 DOI: 10.1093/jmcb/mjac051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 01/14/2023] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules via a fine structure called the centromere that is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during mitosis requires CENP-A-mediated deposition of constitutive centromere-associated network that establishes the inner kinetochore and connects centromeric chromatin to spindle microtubules during mitosis. Although previously proposed to be an adaptor of retinoic acid receptor, here, we show that CENP-R synergizes with CENP-OPQU to regulate kinetochore-microtubule attachment stability and ensure accurate chromosome segregation in mitosis. We found that a phospho-mimicking mutation of CENP-R weakened its localization to the kinetochore, suggesting that phosphorylation may regulate its localization. Perturbation of CENP-R phosphorylation is shown to prevent proper kinetochore-microtubule attachment at metaphase. Mechanistically, CENP-R phosphorylation disrupts its binding with CENP-U. Thus, we speculate that Aurora B-mediated CENP-R phosphorylation promotes the correction of improper kinetochore-microtubule attachment in mitosis. As CENP-R is absent from yeast, we reasoned that metazoan evolved an elaborate chromosome stability control machinery to ensure faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xiao Yuan
- Correspondence to: Xiao Yuan, E-mail:
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Umer Ejaz
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Tongtong Yang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yun-Chi Tang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhen Dou
- Correspondence to: Zhen Dou, E-mail:
| | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| | | |
Collapse
|
17
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
18
|
Liu S, Yuan X, Gui P, Liu R, Durojaye O, Hill DL, Fu C, Yao X, Dou Z, Liu X. Mad2 promotes Cyclin B2 recruitment to the kinetochore for guiding accurate mitotic checkpoint. EMBO Rep 2022; 23:e54171. [PMID: 35384228 PMCID: PMC9171689 DOI: 10.15252/embr.202154171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate mitotic progression relies on the dynamic phosphorylation of multiple substrates by key mitotic kinases. Cyclin-dependent kinase 1 is a master kinase that coordinates mitotic progression and requires its regulatory subunit Cyclin B to ensure full kinase activity and substrate specificity. The function of Cyclin B2, which is a closely related family member of Cyclin B1, remains largely elusive. Here, we show that Mad2 promotes the kinetochore localization of Cyclin B2 and that their interaction at the kinetochores guides accurate chromosome segregation. Our biochemical analyses have characterized the Mad2-Cyclin B2 interaction and delineated a novel Mad2-interacting motif (MIM) on Cyclin B2. The functional importance of the Cyclin B2-Mad2 interaction was demonstrated by real-time imaging in which MIM-deficient mutant Cyclin B2 failed to rescue the chromosomal segregation defects. Taken together, we have delineated a previously undefined function of Cyclin B2 at the kinetochore and have established, in human cells, a mechanism of action by which Mad2 contributes to the spindle checkpoint.
Collapse
Affiliation(s)
- Sikai Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ran Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Wu L, Chen Y, Wan L, Wen Z, Liu R, Li L, Song Y, Wang L. Identification of unique transcriptomic signatures and key genes through RNA sequencing and integrated WGCNA and PPI network analysis in HIV infected lung cancer. Cancer Med 2022; 12:949-960. [PMID: 35608130 PMCID: PMC9844649 DOI: 10.1002/cam4.4853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
With the widespread use of highly active antiretroviral therapy (HARRT), the survival time of AIDS patients has been greatly extended. However, the incidence of lung cancer in HIV-infected patients is increasing and has become a major problem threatening the survival of AIDS patients. The aim of this study is to use Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene analysis to find possible key genes involved in HIV-infected lung cancer. In this study, using lung tissue samples from five pairs of HIV-infected lung cancer patients, second-generation sequencing was performed and transcriptomic data were obtained. A total of 132 HIV-infected lung cancer-related genes were screened out by WGCNA and differential gene expression analysis methods. Based on gene annotation analysis, these genes were mainly enriched in mitosis-related functions and pathways. In addition, in protein-protein interaction (PPI) analysis, a total of 39 hub genes were identified. Among them, five genes (ASPM, CDCA8, CENPF, CEP55, and PLK1) were present in both three hub gene lists (intersection gene, DEGs, and WCGNA module) suggesting that these five genes may become key genes involved in HIV-infected lung cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Yongfang Chen
- Department of PharmacyShanghai Public Health Clinical CenterShanghaiChina
| | - Laiyi Wan
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Zilu Wen
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,Department of Scientific ResearchShanghai Public Health Clinical Center, Fudan UniversityShanghaiChina
| | - Rong Liu
- Department of PharmacyShanghai Public Health Clinical CenterShanghaiChina
| | - Leilei Li
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Yanzheng Song
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,TB CenterShanghai Emerging and Re‐emerging Infectious Disease Institute, Fudan UniversityShanghaiChina
| | - Lin Wang
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,TB CenterShanghai Emerging and Re‐emerging Infectious Disease Institute, Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|