1
|
Zhao Y, Vidossich P, Forbush B, Ma J, Rinehart J, De Vivo M, Cao E. Structural basis for human NKCC1 inhibition by loop diuretic drugs. EMBO J 2025; 44:1540-1562. [PMID: 39875725 PMCID: PMC11876703 DOI: 10.1038/s44318-025-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, Via Morego 30, 16163, Italy
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Junfeng Ma
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, Via Morego 30, 16163, Italy
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
| |
Collapse
|
2
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
5
|
Lee SH, Yousafzai MS, Mohler K, Yadav V, Amiri S, Szuszkiewicz J, Levchenko A, Rinehart J, Murrell M. SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces. Mol Biol Cell 2023; 34:ar122. [PMID: 37672340 PMCID: PMC10846615 DOI: 10.1091/mbc.e23-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
The invasive potential of glioblastoma cells is attributed to large changes in pressure and volume, driven by diverse elements, including the cytoskeleton and ion cotransporters. However, how the cell actuates changes in pressure and volume in confinement, and how these changes contribute to invasive motion is unclear. Here, we inhibited SPAK activity, with known impacts on the cytoskeleton and cotransporter activity and explored its role on the migration of glioblastoma cells in confining microchannels to model invasive spread through brain tissue. First, we found that confinement altered cell shape, inducing a transition in morphology that resembled droplet interactions with a capillary vessel, from "wetting" (more adherent) at low confinement, to "nonwetting" (less adherent) at high confinement. This transition was marked by a change from negative to positive pressure by the cells to the confining walls, and an increase in migration speed. Second, we found that the SPAK pathway impacted the migration speed in different ways dependent upon the extent of wetting. For nonwetting cells, SPAK inhibition increased cell-surface tension and cotransporter activity. By contrast, for wetting cells, it also reduced myosin II and YAP phosphorylation. In both cases, membrane-to-cortex attachment is dramatically reduced. Thus, our results suggest that SPAK inhibition differentially coordinates cotransporter and cytoskeleton-induced forces, to impact glioblastoma migration depending on the extent of confinement.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Muhammad Sulaiman Yousafzai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Sorosh Amiri
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Mechanical Engineering, Yale University, New Haven, CT 06520
| | - Joanna Szuszkiewicz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
6
|
Ravin R, Suarez-Meade P, Busse B, Blank PS, Vivas-Buitrago T, Norton ES, Graepel S, Chaichana KL, Bezrukov L, Guerrero-Cazares H, Zimmerberg J, Quiñones-Hinojosa A. Perivascular invasion of primary human glioblastoma cells in organotypic human brain slices: human cells migrating in human brain. J Neurooncol 2023; 164:43-54. [PMID: 37490233 DOI: 10.1007/s11060-023-04349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is an aggressive primary brain cancer. Lack of effective therapy is related to its highly invasive nature. GBM invasion has been studied with reductionist systems that do not fully recapitulate the cytoarchitecture of the brain. We describe a human-derived brain organotypic model to study the migratory properties of GBM IDH-wild type ex vivo. METHODS Non-tumor brain samples were obtained from patients undergoing surgery (n = 7). Organotypic brain slices were prepared, and green fluorescent protein (GFP)-labeled primary human GBM IDH-wild type cells (GBM276, GBM612, GBM965) were placed on the organotypic slice. Migration was evaluated via microscopy and immunohistochemistry. RESULTS After placement, cells migrated towards blood vessels; initially migrating with limited directionality, sending processes in different directions, and increasing their speed upon contact with the vessel. Once merged, migration speed decreased and continued to decrease with time (p < 0.001). After perivascular localization, migration is limited along the blood vessels in both directions. The percentage of cells that contact blood vessels and then continue to migrate along the vessel was 92.5% (- 3.9/ + 2.9)% while the percentage of cells that migrate along the blood vessel and leave was 7.5% (- 2.9/ + 3.9) (95% CI, Clopper-Pearson (exact); n = 256 cells from six organotypic cultures); these percentages are significantly different from the random (50%) null hypothesis (z = 13.6; p < 10-7). Further, cells increase their speed in response to a decrease in oxygen tension from atmospheric normoxia (20% O2) to anoxia (1% O2) (p = 0.033). CONCLUSION Human organotypic models can accurately study cell migration ex vivo. GBM IDH-wild type cells migrate toward the perivascular space in blood vessels and their migratory parameters change once they contact vascular structures and under hypoxic conditions. This model allows the evaluation of GBM invasion, considering the human brain microenvironment when cells are removed from their native niche after surgery.
Collapse
Affiliation(s)
| | | | - Brad Busse
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Paul S Blank
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | | | - Emily S Norton
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, USA
- Regenerative Sciences Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, USA
| | - Steve Graepel
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ludmila Bezrukov
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | | | - Joshua Zimmerberg
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Alfredo Quiñones-Hinojosa
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA.
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
7
|
Hussein D, Alsereihi R, Salwati AAA, Algehani R, Alhowity A, Al-Hejin AM, Schulten HJ, Baeesa S, Bangash M, Alghamdi F, Cross R, Al Zughaibi T, Saka M, Chaudhary A, Abuzenadah A. The anterior gradient homologue 2 (AGR2) co-localises with the glucose-regulated protein 78 (GRP78) in cancer stem cells, and is critical for the survival and drug resistance of recurrent glioblastoma: in situ and in vitro analyses. Cancer Cell Int 2022; 22:387. [PMID: 36482387 PMCID: PMC9730595 DOI: 10.1186/s12935-022-02814-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.
Collapse
Affiliation(s)
- Deema Hussein
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Reem Alsereihi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia ,College of Health Sciences, Al-Rayan Colleges, 41411, Madinah AL-Munawarah, Saudi Arabia
| | - Abdulla Ahmed A. Salwati
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Rinad Algehani
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Alazouf Alhowity
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Ahmed M. Al-Hejin
- grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- grid.412125.10000 0001 0619 1117Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Richard Cross
- grid.48815.300000 0001 2153 2936School of Engineering and Sustainable Development, Emerging Technologies Research Centre (EMTERC), De Montfort University, The Gateway, Leicester, LE1 9BH UK
| | - Torki Al Zughaibi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
8
|
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 2022; 185:4488-4506.e20. [PMID: 36318922 PMCID: PMC9699283 DOI: 10.1016/j.cell.2022.09.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shawn E Griffiths
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca T Beacham
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William Tennant
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric N Anderson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Calderon
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelly A Connolly
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Muhammad Umar Cheema
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire J Weaver
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Katherine E Querry
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Aylin R Rodan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
9
|
Sluchanko NN. Recent advances in structural studies of 14-3-3 protein complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:289-324. [PMID: 35534110 DOI: 10.1016/bs.apcsb.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Being phosphopeptide-binding hubs, 14-3-3 proteins coordinate multiple cellular processes in eukaryotes, including the regulation of apoptosis, cell cycle, ion channels trafficking, transcription, signal transduction, and hormone biosynthesis. Forming constitutive α-helical dimers, 14-3-3 proteins predominantly recognize specifically phosphorylated Ser/Thr sites within their partners; this generally stabilizes phosphotarget conformation and affects its activity, intracellular distribution, dephosphorylation, degradation and interactions with other proteins. Not surprisingly, 14-3-3 complexes are involved in the development of a range of diseases and are considered promising drug targets. The wide interactome of 14-3-3 proteins encompasses hundreds of different phosphoproteins, for many of which the interaction is well-documented in vitro and in vivo but lack the structural data that would help better understand underlying regulatory mechanisms and develop new drugs. Despite obtaining structural information on 14-3-3 complexes is still lagging behind the research of 14-3-3 interactions on a proteome-wide scale, recent works provided some advances, including methodological improvements and accumulation of new interesting structural data, that are discussed in this review.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|