1
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2025; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
2
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Nayak G, Grover K, Ahmed A, Nguyen MT, Hu YC, Gamlin P, Lang RA. Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells. Dev Cell 2024; 59:2897-2911.e6. [PMID: 39142280 PMCID: PMC11537824 DOI: 10.1016/j.devcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.
Collapse
Affiliation(s)
- Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Brian A Upton
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiara C Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ian Glass
- Birth Defects Research Laboratory, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Gowri Nayak
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kassidy Grover
- Division of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Abdulla Ahmed
- Medical Doctor (M.D.) Training Program, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Minh-Thanh Nguyen
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Pan D, Zhang X, Jin K, Jin ZB. CRX haploinsufficiency compromises photoreceptor precursor translocation and differentiation in human retinal organoids. Stem Cell Res Ther 2023; 14:346. [PMID: 38049871 PMCID: PMC10696917 DOI: 10.1186/s13287-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The CRX-associated autosomal dominant retinopathies suggest a possible pathogenic mechanism of gene haploinsufficiency. However, based on reported human patient cases and studies with mouse models, it is hard to confirm the specific weight of haploinsufficiency in pathogenesis due to the interspecies gaps between gene expression and function. METHODS We created monoallelic CRX by replacing one allele with tdTomato in human embryonic stem cells (hESCs) and subsequently dissect pathogenesis in hESCs-derived retinal organoids. We used transcriptome and immunofluorescence analyses to dissect phenotypic differences between CRX-monoallelic knockout and control wildtype organoids. For location analysis of CRX+ cells, a CRX-expression-tracing system was constructed in control hESCs. We implemented long-term live-cell imaging to describe the translocation of CRX+ cells between two groups in early organoid differentiation. The expression pattern of these dynamic differences was validated using RNA-seq and immunofluorescence assays. RESULTS We identified delayed differentiation of outer nuclear layer (ONL) stratification along with thinner ONL, serious loss of photoreceptor outer segments, as well as downregulated expression of gene for phototransduction and inner/outer segment formation. By live-cell imaging and immunostaining, we observed the overtension of actomyosin network and the arrested translocation of monoallelic CRX+ cells in the early stage of retinal differentiation. CONCLUSIONS We confirmed that gene haploinsufficiency is the mechanism for the dominant pathogenicity of CRX and discovered that CRX regulated postmitotic photoreceptor precursor translocation in addition to its specification of photoreceptor cell fates during human retinal development. These findings revealed a new underlying mechanism of CRX dominant pathogenesis and provided a new clue for the treatment of CRX-associated human retinopathies.
Collapse
Affiliation(s)
- Deng Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
4
|
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023; 12:2574. [PMID: 37947653 PMCID: PMC10650203 DOI: 10.3390/cells12212574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.
Collapse
Affiliation(s)
- David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | | | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, and IRYCIS, 28034 Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Gurdita A, Pham Truong VQB, Dolati P, Juric M, Tachibana N, Liu ZC, Ortín-Martínez A, Ibrahimi M, Pokrajac NT, Comanita L, Pacal M, Huang M, Sugita S, Bremner R, Wallace VA. Progenitor division and cell autonomous neurosecretion are required for rod photoreceptor sublaminar positioning. Proc Natl Acad Sci U S A 2023; 120:e2308204120. [PMID: 37812728 PMCID: PMC10589646 DOI: 10.1073/pnas.2308204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Migration is essential for the laminar stratification and connectivity of neurons in the central nervous system. In the retina, photoreceptors (PRs) migrate to positions according to birthdate, with early-born cells localizing to the basal-most side of the outer nuclear layer. It was proposed that apical progenitor mitoses physically drive these basal translocations non-cell autonomously, but direct evidence is lacking, and whether other mechanisms participate is unknown. Here, combining loss- or gain-of-function assays to manipulate cell cycle regulators (Sonic hedgehog, Cdkn1a/p21) with an in vivo lentiviral labelling strategy, we demonstrate that progenitor division is one of two forces driving basal translocation of rod soma. Indeed, replacing Shh activity rescues abnormal rod translocation in retinal explants. Unexpectedly, we show that rod differentiation also promotes rod soma translocation. While outer segment function or formation is dispensable, Crx and SNARE-dependent synaptic function are essential. Thus, both non-cell and cell autonomous mechanisms underpin PR soma sublaminar positioning in the mammalian retina.
Collapse
Affiliation(s)
- Akshay Gurdita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Victor Q. B. Pham Truong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Parnian Dolati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Matey Juric
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Zhongda C. Liu
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Mostafa Ibrahimi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Nenad T. Pokrajac
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Marek Pacal
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ONM5G 1X5, Canada
| | - Mengjia Huang
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Shuzo Sugita
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ONM5G 1X5, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ONM5T 3A9, Canada
| | - Valerie A. Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ONM5T 3A9, Canada
| |
Collapse
|
6
|
Travis AM, Manocha S, Willer JR, Wessler TS, Skiba NP, Pearring JN. Disrupting the ciliary gradient of active Arl3 affects rod photoreceptor nuclear migration. eLife 2023; 12:80533. [PMID: 36598133 PMCID: PMC9831603 DOI: 10.7554/elife.80533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The small GTPase Arl3 is important for the enrichment of lipidated proteins to primary cilia, including the outer segment of photoreceptors. Human mutations in the small GTPase Arl3 cause both autosomal recessive and dominant inherited retinal dystrophies. We discovered that dominant mutations result in increased active G-protein-Arl3-D67V has constitutive activity and Arl3-Y90C is fast cycling-and their expression in mouse rods resulted in a displaced nuclear phenotype due to an aberrant Arl3-GTP gradient. Using multiple strategies, we go on to show that removing or restoring the Arl3-GTP gradient within the cilium is sufficient to rescue the nuclear migration defect. Together, our results reveal that an Arl3 ciliary gradient is involved in proper positioning of photoreceptor nuclei during retinal development.
Collapse
Affiliation(s)
- Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Samiya Manocha
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Timothy S Wessler
- Department of Mathematics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke UniversityDurhamUnited States
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States,Department of Cell and Developmental Biology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
7
|
Rempel SK, Welch MJ, Ludwig AL, Phillips MJ, Kancherla Y, Zack DJ, Gamm DM, Gómez TM. Human photoreceptors switch from autonomous axon extension to cell-mediated process pulling during synaptic marker redistribution. Cell Rep 2022; 39:110827. [PMID: 35584680 DOI: 10.1016/j.celrep.2022.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.
Collapse
Affiliation(s)
- Sarah K Rempel
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Madalynn J Welch
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Allison L Ludwig
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - M Joseph Phillips
- McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Yochana Kancherla
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Timothy M Gómez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Ali RR, Pearson RA. Tracking neuronal motility in live murine retinal explants. STAR Protoc 2021; 2:101008. [PMID: 34917982 PMCID: PMC8666713 DOI: 10.1016/j.xpro.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The developing retina undergoes dynamic organizational changes involving significant intra-retinal motility of the encompassing cells. Here, we present a protocol for tracking retinal cell motility in live explanted mouse retinae. Although originally applied to rod and cone photoreceptors, this strategy is applicable to any fluorescently labeled cell in mouse retinae and other similar experimental retinal models. Careful tissue handling is critical for the successful acquisition of high-quality live imaging data. Further instructions for semi-automated in silico data handling are provided. For complete details on the use and execution of this protocol, please refer to Aghaizu et al. (2021).
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Martha R. Robinson
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Robin R. Ali
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Rachael A. Pearson
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
9
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|