1
|
Athanasiadis M, Masserini S, Yuan L, Fetterhoff D, Leutgeb JK, Leutgeb S, Leibold C. Low rate hippocampal delay period activity encodes behavioral experience. Hippocampus 2024; 34:422-437. [PMID: 38838068 PMCID: PMC11978360 DOI: 10.1002/hipo.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.
Collapse
Affiliation(s)
- Markos Athanasiadis
- Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefano Masserini
- Computational Neurophysics Lab, Institute for Theoretical Physics, Universität Bremen, Bremen, Germany
- Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Li Yuan
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Dustin Fetterhoff
- Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
| | - Jill K. Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Kavli Institute for Brain and Mind, University of California, La Jolla, California, USA
| | - Christian Leibold
- Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Aery Jones EA, Giocomo LM. Neural ensembles in navigation: From single cells to population codes. Curr Opin Neurobiol 2023; 78:102665. [PMID: 36542882 PMCID: PMC9845194 DOI: 10.1016/j.conb.2022.102665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
The brain can represent behaviorally relevant information through the firing of individual neurons as well as the coordinated firing of ensembles of neurons. Neurons in the hippocampus and associated cortical regions participate in a variety of types of ensembles to support navigation. These ensemble types include single cell codes, population codes, time-compressed sequences, behavioral sequences, and engrams. We present the physiological basis and behavioral relevance of ensemble firing. We discuss how these traditional definitions of ensembles can constrain or expand potential analyses due to the underlying assumptions and abstractions made. We highlight how coding can change at the ensemble level while underlying single cell codes remain intact. Finally, we present how ensemble definitions could be broadened to better understand the full complexity of the brain.
Collapse
Affiliation(s)
- Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Athanasiadis M, Masserini S, Yuan L, Fetterhoff D, Leutgeb JK, Leutgeb S, Leibold C. Low Rate Hippocampal Delay Period Activity Encodes Behavioral Experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523199. [PMID: 36711893 PMCID: PMC9881970 DOI: 10.1101/2023.01.09.523199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.
Collapse
Affiliation(s)
- Markos Athanasiadis
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie & Bernstein Center Freiburg, 79104 Freiburg, Germany
| | | | - Li Yuan
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
| | - Dustin Fetterhoff
- Department Biologie II, Ludwig-Maximilans Universität München, 82152 Martinsried, Germany
- Universidad Politecnica de Madrid, Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, 28223 Madrid, Spain
| | - Jill K Leutgeb
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
| | - Stefan Leutgeb
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
- Kavli Institute for Brain and Mind, La Jolla 92093 CA, USA
| | - Christian Leibold
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie & Bernstein Center Freiburg, 79104 Freiburg, Germany
- Albert-Ludwigs-Universität Freiburg, BrainLinks-BrainTools, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Guo B, Xia Y, Wang C, Wang F, Zhang C, Xiao L, Zhang X, Meng Y, Wang Y, Ding J, Wang L, Zhu C, Jiang S, Huo X, Sun Y, Gao P, Wu J, Yu B, Huo J, Sun T. Decreased cognitive function of ALG13KO female mice may be related to the decreased plasticity of hippocampal neurons. Neuropeptides 2022; 96:102290. [PMID: 36152356 DOI: 10.1016/j.npep.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023]
Abstract
Asparagine-linked glycosylation 13 (ALG13) is an X-linked gene that encodes a protein involved in the glycosylation of the N-terminus. ALG13 deficiency leads to ALG13-congenital disorders of glycosylation (ALG13-CDG), usually in females presenting with mental retardation and epilepsy. Cognitive function is an important function of the hippocampus, and forms the basis for learning, memory and social abilities. However, researchers have not yet investigated the effect of ALG13 on hippocampal cognitive function. In this study, the exploration, learning, memory and social abilities of ALG13 knockout (KO) female mice were decreased in behavioral experiments. Golgi staining demonstrated a decrease in the complexity of hippocampal neurons. Western blot and immunofluorescence staining of the synaptic plasticity factors postsynaptic density protein 95 (PSD95) and synaptophysin (SYP) displayed varying degrees of decline. In other words, the KO of ALG13 may have reduced the expression of PSD95 and SYP in the hippocampus of female mice. Moreover, it may have lowered the synaptic plasticity in various areas of the hippocampus, thus resulting in decreased dendrite length, complexity, and dendrite spine density, which affected the hippocampal function and reduced the cognitive function in female mice.
Collapse
Affiliation(s)
- Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yu Xia
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chunlin Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xianhao Huo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Peng Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoli Yu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junming Huo
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia 014017, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|