1
|
Singh Yadav A, Hong L, Klees PM, Kiss A, Petit M, He X, Barrios IM, Heeney M, Galang AMD, Smith RS, Boudaoud A, Roeder AH. Growth directions and stiffness across cell layers determine whether tissues stay smooth or buckle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.22.549953. [PMID: 37546730 PMCID: PMC10401922 DOI: 10.1101/2023.07.22.549953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From smooth shapes to buckles, nature exhibits organs of various shapes and forms. How cells grow to produce smooth shaped leaves and sepals remain unclear. Here, we show that growth along the longitudinal axis during early developmental stages and comparable stiffness across both epidermal layers of Arabidopsis sepals are essential for smoothness, as seen in the wild type. We identified a mutant (as2-7D) with ectopic expression of ASYMMETRIC LEAVES 2 (AS2) on the outer epidermis. Our analysis reveals that ectopic AS2 expression causes the outer epidermis of as2-7D sepals to buckle during early stages of sepal development. We show that buckling of the outer epidermis occurs due to conflicting cell growth directions and unequal tissue stiffness across the epidermal layers. Overexpression of cyclin-dependent kinase (CDK) inhibitor Kip-related protein 1 (KRP1) in as2-7D restores sepal smoothness by aligning the growth directions of the outer epidermal cells along the longitudinal axis, while also increasing the overall stiffness of the outer epidermis. Furthermore, buckling is associated with the convergence of auxin efflux transporter protein PIN-FORMED 1 (PIN1) to generate outgrowth in the sepals at later stages, suggesting that buckling can initiate outgrowths. Our findings suggest that in addition to molecular cues influencing tissue mechanics, tissue mechanics can also modulate molecular signals, giving rise to well-defined shapes.
Collapse
Affiliation(s)
- Avilash Singh Yadav
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Patrick M. Klees
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Manuel Petit
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Xi He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Iselle M. Barrios
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heeney
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anabella Maria D. Galang
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - Arezki Boudaoud
- LadHyX, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau Cedex, France
| | - Adrienne H.K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Balandra A, Doll Y, Hirose S, Kajiwara T, Kashino Z, Inami M, Koshimizu S, Fukaki H, Watahiki MK. P-MIRU, a Polarized Multispectral Imaging System, Reveals Reflection Information on the Biological Surface. PLANT & CELL PHYSIOLOGY 2023; 64:1311-1322. [PMID: 37217180 DOI: 10.1093/pcp/pcad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023]
Abstract
Reflection light forms the core of our visual perception of the world. We can obtain vast information by examining reflection light from biological surfaces, including pigment composition and distribution, tissue structure and surface microstructure. However, because of the limitations in our visual system, the complete information in reflection light, which we term 'reflectome', cannot be fully exploited. For example, we may miss reflection light information outside our visible wavelengths. In addition, unlike insects, we have virtually no sensitivity to light polarization. We can detect non-chromatic information lurking in reflection light only with appropriate devices. Although previous studies have designed and developed systems for specialized uses supporting our visual systems, we still do not have a versatile, rapid, convenient and affordable system for analyzing broad aspects of reflection from biological surfaces. To overcome this situation, we developed P-MIRU, a novel multispectral and polarization imaging system for reflecting light from biological surfaces. The hardware and software of P-MIRU are open source and customizable and thus can be applied for virtually any research on biological surfaces. Furthermore, P-MIRU is a user-friendly system for biologists with no specialized programming or engineering knowledge. P-MIRU successfully visualized multispectral reflection in visible/non-visible wavelengths and simultaneously detected various surface phenotypes of spectral polarization. The P-MIRU system extends our visual ability and unveils information on biological surfaces.
Collapse
Affiliation(s)
| | - Yuki Doll
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shogo Hirose
- Faculty of Agriculture, Meijo University, Shiogamaguchi 1-501, Tempaku-ku, Nagoya, 468-0073 Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Zendai Kashino
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Masahiko Inami
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Shizuka Koshimizu
- School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, 214-8571 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada-ku, Kobe, 657-8501 Japan
| | - Masaaki K Watahiki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
3
|
Koshimizu S, Masuda S, Shibata A, Ishii T, Shirasu K, Hoshino A, Arita M. Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum. DNA Res 2023; 30:dsad019. [PMID: 37691489 PMCID: PMC10558197 DOI: 10.1093/dnares/dsad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Hibiscus trionum, commonly known as the 'Flower of an Hour', is an easily cultivated plant in the Malvaceae family that is widespread in tropical and temperate regions, including drylands. The purple base part of its petal exhibits structural colour due to the fine ridges on the epidermal cell surface, and the molecular mechanism of ridge formation has been actively investigated. We performed genome sequencing of H. trionum using a long-read sequencing technology with transcriptome and pathway analyses to identify candidate genes for fine structure formation. The ortholog of AtSHINE1, which is involved in the biosynthesis of cuticular wax in Arabidopsis thaliana, was significantly overexpressed in the iridescent tissue. In addition, orthologs of AtCUS2 and AtCYP77A, which contribute to cutin synthesis, were also overexpressed. Our results provide important insights into the formation of fine ridges on epidermal cells in plants using H. trionum as a model.
Collapse
Affiliation(s)
- Shizuka Koshimizu
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Sachiko Masuda
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Arisa Shibata
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori 680-001, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
4
|
Irish VF. My favourite flowering image: Arabidopsis conical petal epidermal cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2940-2943. [PMID: 36932972 DOI: 10.1093/jxb/erad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Kellenberger RT, Ponraj U, Delahaie B, Fattorini R, Balk J, Lopez-Gomollon S, Müller KH, Ellis AG, Glover BJ. Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa. Curr Biol 2023; 33:1502-1512.e8. [PMID: 36963385 DOI: 10.1016/j.cub.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.
Collapse
Affiliation(s)
- Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; CIRAD, UMR DIADE, Montpellier 34398, France; UMR DIADE, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 4JT, UK
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
6
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
7
|
Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling. Molecules 2023; 28:molecules28041710. [PMID: 36838698 PMCID: PMC9962751 DOI: 10.3390/molecules28041710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
We investigate the combined effects of surface diffraction and total internal reflection (TIR) in the design of 3-dimensional materials exhibiting distinct structural colour on various facets. We employ mechanical wrinkling to introduce surface diffraction gratings (from the nano to the micron scales) on one face of an elastomeric rectangular parallelepiped-shaped slab and explore the roles, in the perceived colours, of wrinkling pattern, wavelength, the directionality of incident light and observation angles. We propose a simple model that satisfactorily accounts for all experimental observations. Employing polydimethylsiloxane (PDMS), which readily swells in the presence of various liquids and gases, we demonstrate that such multifaceted colours can respond to their environment. By coupling a right angle triangular prism with a surface grating, we demonstrate the straightforward fabrication of a so-called GRISM (GRating + prISM). Finally, using a range of examples, we outline possibilities for a predictive material design using multi-axial wrinkling patterns and more complex polyhedra.
Collapse
|
8
|
Moyroud E, Airoldi CA, Ferria J, Giorio C, Steimer SS, Rudall PJ, Prychid CJ, Halliwell S, Walker JF, Robinson S, Kalberer M, Glover BJ. Cuticle chemistry drives the development of diffraction gratings on the surface of Hibiscus trionum petals. Curr Biol 2022; 32:5323-5334.e6. [PMID: 36423640 DOI: 10.1016/j.cub.2022.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Plants combine both chemical and structural means to appear colorful. We now have an extensive understanding of the metabolic pathways used by flowering plants to synthesize pigments, but the mechanisms remain obscure whereby cells produce microscopic structures sufficiently regular to interfere with light and create an optical effect. Here, we combine transgenic approaches in a novel model system, Hibiscus trionum, with chemical analyses of the cuticle, both in transgenic lines and in different species of Hibiscus, to investigate the formation of a semi-ordered diffraction grating on the petal surface. We show that regulating both cuticle production and epidermal cell growth is insufficient to determine the type of cuticular pattern produced. Instead, the chemical composition of the cuticle plays a crucial role in restricting the formation of diffraction gratings to the pigmented region of the petal. This suggests that buckling, driven by spatiotemporal regulation of cuticle chemistry, could pattern the petal surface at the nanoscale.
Collapse
Affiliation(s)
- Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah S Steimer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | - Shannon Halliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Markus Kalberer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|