1
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
2
|
Jiang Z, Li Z, Chen Y, Nie N, Liu X, Liu J, Shen Y. MLN4924 alleviates autoimmune myocarditis by promoting Act1 degradation and blocking Act1-mediated mRNA stability. Int Immunopharmacol 2024; 139:112716. [PMID: 39038386 DOI: 10.1016/j.intimp.2024.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Prolonged exposure to interleukin-17A (IL-17A) can induce autoimmune myocarditis, and MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to effectively suppress various inflammatory reactions. However, the effects of MLN4924 in IL-17A-mediated inflammation associated with autoimmune myocarditis remain uncertain. METHODS An experimental autoimmune myocarditis (EAM) model was established and treated with MLN4924. The inflammation degree of heart tissues was assessed histopathologically. The expression levels of inflammatory cytokines and chemokines were measured using ELISA and RT-qPCR, respectively. Additionally, the interaction of biomacromolecules was detected through co-immunoprecipitation (Co-IP) and RNA immunoprecipitation (RIP). RESULTS MLN4924 could attenuate IL-17A-induced inflammation. In the in vivo studies, MLN4924 treatment improved inflammatory responses, diminished immune cell infiltration and tissue fibrosis, and reduced the secretion of various inflammatory cytokines in serum, including IL-1β, IL-6, TNF-α, and MCP-1. In vitro experiments further corroborated these findings, showing that MLN4924 treatment reduced the secretion and transcription of pro-inflammatory factors, particularly MCP-1. Mechanistically, we confirmed that MLN4924 promoted Act1 ubiquitination degradation and disrupted Act1's interaction with IL-17R, thereby impeding the formation of the IL-17R/Act1/TRAF6 complex and subsequent activation of TAK1, c-Jun, and p65. Moreover, MLN4924 interfered with Act1's binding to mRNA, resulting in mRNA instability. CONCLUSIONS In conclusion, MLN4924 effectively alleviated inflammatory symptoms in EAM by disrupting the interaction between IL and 17R and Act1, thereby reducing Act1-mediated mRNA stability and resulting in decreased expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Zuli Jiang
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuolun Li
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Youming Chen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Na Nie
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiner Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Shen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Koufaris C, Demetriadou C, Nicolaidou V, Kirmizis A. Bioinformatic Analysis Reveals the Association of Human N-Terminal Acetyltransferase Complexes with Distinct Transcriptional and Post-Transcriptional Processes. Biochem Genet 2024:10.1007/s10528-024-10860-z. [PMID: 38864963 DOI: 10.1007/s10528-024-10860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
N-terminal acetyltransferases (NAT) are the protein complexes that deposit the abundant N-terminal acetylation (Nt-Ac) on eukaryotic proteins, with seven human complexes currently identified. Despite the increasing recognition of their biological and clinical importance, NAT regulation remains elusive. In this study, we performed a bioinformatic investigation to identify transcriptional and post-transcriptional processes that could be involved in the regulation of human NAT complexes. First, co-expression analysis of independent transcriptomic datasets revealed divergent pathway associations for human NAT, which are potentially connected to their distinct cellular functions. One interesting connection uncovered was the coordinated regulation of the NatA and proteasomal genes in cancer and immune cells, confirmed by analysis of multiple datasets and in isolated primary T cells. Another distinctive association was of NAA40 (NatD) with DNA replication, in cancer and non-cancer settings. The link between NAA40 transcription and DNA replication is potentially mediated through E2F1, which we have experimentally shown to bind the promoter of this NAT. Second, the coupled examination of transcriptomic and proteomic datasets revealed a much greater intra-complex concordance of NAT subunits at the protein compared to the transcript level, indicating the predominance of post-transcriptional processes for achieving their coordination. In agreement with this concept, we also found that the effects of somatic copy number alterations affecting NAT genes are attenuated post-transcriptionally. In conclusion, this study provides novel insights into the regulation of human NAT complexes.
Collapse
Affiliation(s)
- C Koufaris
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - C Demetriadou
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - V Nicolaidou
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
| | - A Kirmizis
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
4
|
Huang L, Guo H. Acetylation modification in the regulation of macroautophagy. ADVANCED BIOTECHNOLOGY 2024; 2:19. [PMID: 39883319 PMCID: PMC11740868 DOI: 10.1007/s44307-024-00027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 01/31/2025]
Abstract
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs). Among these PTMs, acetylation modification has emerged as a focal point in yeast and animal studies. It plays a pivotal role in autophagy by directly targeting core components within the central machinery of autophagy, including autophagy initiation, nucleation, phagophore expansion, and autophagosome maturation. Additionally, acetylation modulates autophagy at the transcriptional level by modifying histones and transcription factors. Despite its well-established significance in yeast and mammals, the role of acetylation in plant autophagy remains largely unexplored, and the precise regulatory mechanisms remain enigmatic. In this comprehensive review, we summarize the current understanding of the function and underlying mechanisms of acetylation in regulating autophagy across yeast, mammals, and plants. We particularly highlight recent advances in deciphering the impact of acetylation on plant autophagy. These insights not only provide valuable guidance but also inspire further scientific inquiries into the intricate role of acetylation in plant autophagy.
Collapse
Affiliation(s)
- Li Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Ma J, Yan L, Yang J, He Y, Wu L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. Chembiochem 2024; 25:e202300481. [PMID: 38009768 DOI: 10.1002/cbic.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.
Collapse
Affiliation(s)
- Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
6
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Zhang J, Jiang X, Yang Y, Yang L, Lu B, Ji Y, Guo L, Zhang F, Xue J, Zhi X. Peptidome analysis reveals critical roles for peptides in a rat model of intestinal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:12852-12872. [PMID: 37955663 DOI: 10.18632/aging.205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqi Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Yang
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yannan Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Leijun Guo
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
10
|
Huang T, Jiang G, Zhang Y, Lei Y, Liu S, Li H, Lu K. The RNA polymerase II subunit Rpb9 activates ATG1 transcription and autophagy. EMBO Rep 2022; 23:e54993. [PMID: 36102592 PMCID: PMC9638876 DOI: 10.15252/embr.202254993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 08/01/2023] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotic cells that mediates the degradation and recycling of intracellular substrates. Proteins encoded by autophagy-related (ATG) genes are essentially involved in the autophagy process and must be tightly regulated in response to various circumstances, such as nutrient-rich and starvation conditions. However, crucial transcriptional activators of ATG genes have remained obscure. Here, we identify the RNA polymerase II subunit Rpb9 as an essential regulator of autophagy by a high-throughput screen of a Saccharomyces cerevisiae gene knockout library. Rpb9 plays a crucial and specific role in upregulating ATG1 transcription, and its deficiency decreases autophagic activities. Rpb9 promotes ATG1 transcription by binding to its promoter region, which is mediated by Gcn4. Furthermore, the function of Rpb9 in autophagy and its regulation of ATG1/ULK1 transcription are conserved in mammalian cells. Together, our results indicate that Rpb9 specifically activates ATG1 transcription and thus positively regulates the autophagy process.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yuqing Lei
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Huihui Li
- West China Second University HospitalSichuan UniversityChengduChina
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Jiang L, Shen T, Wang X, Dai L, Lu K, Li H. N-terminal acetylation regulates autophagy. Autophagy 2022; 18:700-702. [PMID: 35090375 PMCID: PMC9037517 DOI: 10.1080/15548627.2022.2027192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Posttranslational modification (PTM) is pivotal for regulating protein functions. Compared to acetylation on lysine residues, the functions and molecular mechanisms of N-terminal acetylation that occur on the first amino acids of proteins are less understood in the macroautophagy/autophagy field. We recently demonstrated that the B-type N-terminal acetyltransferase NatB, formed by the catalytic subunit Nat3 and auxiliary subunit Mdm20, is essential for autophagy. Deficiency of NatB causes blockage of autophagosome formation. We further identified the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 as substrates modified by NatB. The N-terminal acetylation of Act1 promotes its formation of actin filaments and thus facilitates trafficking of Atg9-containing vesicles for autophagosome formation, whereas N-terminal acetylation of Vps1 promotes its interaction with SNARE proteins and facilitates autophagosome-vacuole fusion. Restoring the N-terminal acetylation of Act and Vps1 does not restore autophagy in NatB-deleted cells, suggesting that additional substrates of NatB modification are involved in autophagy regulation.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Tianyun Shen
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Xinyuan Wang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kefeng Lu
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China,CONTACT Huihui Li Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu610041, China
| |
Collapse
|