1
|
Guharajan S, Parisutham V, Brewster RC. A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators. Nucleic Acids Res 2025; 53:gkaf058. [PMID: 39921566 PMCID: PMC11806353 DOI: 10.1093/nar/gkaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, United States
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
2
|
Parisutham V, Guharajan S, Lian M, Rogers H, Joyce S, Guillen MN, Brewster RC. E. coli transcription factors regulate promoter activity by a universal, homeostatic mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627516. [PMID: 39713321 PMCID: PMC11661191 DOI: 10.1101/2024.12.09.627516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription factors (TFs) may activate or repress gene expression through an interplay of different mechanisms, including RNA polymerase (RNAP) recruitment, exclusion, and initiation. TFs often have drastically different regulatory behaviors depending on promoter context and interacting cofactors. However, the detailed mechanisms by which each TF affects transcription and produce promoter-dependent regulation is unclear. Here, we discover that a simple model explains the regulatory effects of E. coli TFs in a range of contexts. Specifically, we measure the relationship between basal promoter activity and its regulation by diverse TFs and find that the contextual changes in TF function are determined entirely by the basal strength of the regulated promoter: TFs exert lower fold-change on stronger promoters under a precise inverse scaling. Remarkably, this scaling relationship holds for both activators and repressors, indicating a universal mechanism of gene regulation. Our data, which spans between 100-fold activation to 1000-fold repression, is consistent with a model of regulation driven by stabilization of RNAP at the promoter for every TF. Crucially, this indicates that TFs naturally act to maintain homeostatic expression levels across genetic or environmental perturbations, ensuring robust expression of regulated genes.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Sunil Guharajan
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston MA, 02115, USA
- Division of Pediatrics, Harvard Medical School, Boston MA, 02115, USA
| | - Melina Lian
- Department of Chemistry, University of Southern California, Los Angeles CA, 90089, USA
| | - Hannah Rogers
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Shannon Joyce
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Mariana Noto Guillen
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| | - Robert C. Brewster
- Department of Systems Biology, UMass Chan Medical School, Worcester MA, 01605, USA
| |
Collapse
|
3
|
Yu L, Wang H, Zhang X, Xue T. Oxidative stress response in avian pathogenic Escherichia coli. Res Vet Sci 2024; 180:105426. [PMID: 39342922 DOI: 10.1016/j.rvsc.2024.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron‑sulfur (FeS) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.
Collapse
Affiliation(s)
- Lumin Yu
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China.
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinglin Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Vilar JMG, Saiz L. The unreasonable effectiveness of equilibrium gene regulation through the cell cycle. Cell Syst 2024; 15:639-648.e2. [PMID: 38981487 DOI: 10.1016/j.cels.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/19/2023] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Systems like the prototypical lac operon can reliably hold repression of transcription upon DNA replication across cell cycles with just 10 repressor molecules per cell and behave as if they were at equilibrium. The origin of this phenomenology is still an unresolved question. Here, we develop a general theory to analyze strong perturbations in quasi-equilibrium systems and use it to quantify the effects of DNA replication in gene regulation. We find a scaling law linking actual with predicted equilibrium transcription via a single kinetic parameter. We show that even the lac operon functions beyond the physical limits of naive regulation through compensatory mechanisms that suppress non-equilibrium effects. Synthetic systems without adjuvant activators, such as the cAMP receptor protein (CRP), lack this reliability. Our results provide a rationale for the function of CRP, beyond just being a tunable activator, as a mitigator of cell cycle perturbations.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany.
| |
Collapse
|
5
|
van der Sijs A, Visser T, Moerman P, Folkers G, Kegel W. Broccoli aptamer allows quantitative transcription regulation studies in vitro. PLoS One 2024; 19:e0304677. [PMID: 38870160 PMCID: PMC11175446 DOI: 10.1371/journal.pone.0304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Quantitative transcription regulation studies in vivo and in vitro often make use of reporter proteins. Here we show that using Broccoli aptamers, quantitative study of transcription in various regulatory scenarios is possible without a translational step. To explore the method we studied several regulatory scenarios that we analyzed using thermodynamic occupancy-based models, and found excellent agreement with previous studies. In the next step we show that non-coding DNA can have a dramatic effect on the level of transcription, similar to the influence of the lac repressor with a strong affinity to operator sites. Finally, we point out the limitations of the method in terms of delay times coupled to the folding of the aptamer. We conclude that the Broccoli aptamer is suitable for quantitative transcription measurements.
Collapse
Affiliation(s)
- Amanda van der Sijs
- Van ’t Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Thomas Visser
- Van ’t Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Pepijn Moerman
- Self-Organizing Soft Matter, Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gert Folkers
- Utrecht NMR Group, Bijvoet Centre fo Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Willem Kegel
- Van ’t Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Ali MZ, Guharajan S, Parisutham V, Brewster RC. Regulatory properties of transcription factors with diverse mechanistic function. PLoS Comput Biol 2024; 20:e1012194. [PMID: 38857275 PMCID: PMC11192337 DOI: 10.1371/journal.pcbi.1012194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Transcription factors (TFs) regulate the process of transcription through the modulation of different kinetic steps. Although models can often describe the observed transcriptional output of a measured gene, predicting a TFs role on a given promoter requires an understanding of how the TF alters each step of the transcription process. In this work, we use a simple model of transcription to assess the role of promoter identity, and the degree to which TFs alter binding of RNAP (stabilization) and initiation of transcription (acceleration) on three primary characteristics: the range of steady-state regulation, cell-to-cell variability in expression, and the dynamic response time of a regulated gene. We find that steady state regulation and the response time of a gene behave uniquely for TFs that regulate incoherently, i.e that speed up one step but slow the other. We also find that incoherent TFs have dynamic implications, with one type of incoherent mode configuring the promoter to respond more slowly at intermediate TF concentrations. We also demonstrate that the noise of gene expression for these TFs is sensitive to promoter strength, with a distinct non-monotonic profile that is apparent under stronger promoters. Taken together, our work uncovers the coupling between promoters and TF regulatory modes with implications for understanding natural promoters and engineering synthetic gene circuits with desired expression properties.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Geology, Physics and Environmental Science, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert C. Brewster
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
7
|
Zhao F, Niman CM, Ostovar G, Chavez MS, Atkinson JT, Bonis BM, Gralnick JA, El-Naggar MY, Boedicker JQ. Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer. ACS Synth Biol 2024; 13:1467-1476. [PMID: 38696739 DOI: 10.1021/acssynbio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Benjamin M Bonis
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Parisutham V, Chhabra S, Ali MZ, Brewster RC. Tunable transcription factor library for robust quantification of regulatory properties in Escherichia coli. Mol Syst Biol 2022; 18:e10843. [PMID: 35694815 PMCID: PMC9189660 DOI: 10.15252/msb.202110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Predicting the quantitative regulatory function of transcription factors (TFs) based on factors such as binding sequence, binding location, and promoter type is not possible. The interconnected nature of gene networks and the difficulty in tuning individual TF concentrations make the isolated study of TF function challenging. Here, we present a library of Escherichia coli strains designed to allow for precise control of the concentration of individual TFs enabling the study of the role of TF concentration on physiology and regulation. We demonstrate the usefulness of this resource by measuring the regulatory function of the zinc-responsive TF, ZntR, and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc alters ZntR regulatory function in a way that enables activation of the regulated gene to be robust with respect to ZntR concentration. For GalR and GalS, we are able to demonstrate that these paralogous TFs have fundamentally distinct regulatory roles beyond differences in binding affinity.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| | - Shivani Chhabra
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Md Zulfikar Ali
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| | - Robert C Brewster
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
- Department of Microbiology and Physiological SystemsUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| |
Collapse
|