1
|
He L, Sun H, Wang H. 3D organization of enhancers in MuSCs. Curr Top Dev Biol 2024; 158:407-431. [PMID: 38670714 DOI: 10.1016/bs.ctdb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle stem cells (MuSCs), also known as satellite cells, are essential for muscle growth and injury induced regeneration. In healthy adult muscle, MuSCs remain in a quiescent state located in a specialized niche beneath the basal lamina. Upon injury, these dormant MuSCs can quickly activate to re-enter the cell cycle and differentiate into new myofibers, while a subset undergoes self-renewal and returns to quiescence to restore the stem cell pool. The myogenic lineage progression is intricately controlled by complex intrinsic and extrinsic cues and coupled with dynamic transcriptional programs. In transcriptional regulation, enhancers are key regulatory elements controlling spatiotemporal gene expression through physical contacting promoters of target genes. The three-dimensional (3D) chromatin architecture is known to orchestrate the establishment of proper enhancer-promoter interactions throughout development and aging. However, studies dissecting the 3D organization of enhancers in MuSCs are just emerging. Here, we provide an overview of the general properties of enhancers and newly developed methods for assessing their activity. In particular, we summarize recent discoveries regarding the 3D rewiring of enhancers during MuSC specification, lineage progression as well as aging.
Collapse
Affiliation(s)
- Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Huating Wang
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China; Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
2
|
Romero MA, Pyle AD. 'Enhancing' skeletal muscle and stem cells in three-dimensions: genome regulation of skeletal muscle in development and disease. Curr Opin Genet Dev 2023; 83:102133. [PMID: 37951138 PMCID: PMC10872784 DOI: 10.1016/j.gde.2023.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023]
Abstract
The noncoding genome imparts important regulatory control over gene expression. In particular, gene enhancers represent a critical layer of control that integrates developmental and differentiation signals outside the cell into transcriptional outputs inside the cell. Recently, there has been an explosion in genomic techniques to probe enhancer control, function, and regulation. How enhancers are regulated and integrate signals in stem cell development and differentiation is largely an open question. In this review, we focus on the role gene enhancers play in muscle stem cell specification, differentiation, and progression. We pay specific attention toward the identification of muscle-specific enhancers, the binding of transcription factors to these enhancers, and how enhancers communicate to their target genes via three-dimensional looping.
Collapse
Affiliation(s)
- Matthew A Romero
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Kuroki Y, Agata K. Isolation of planarian viable cells using fluorescence-activated cell sorting for advancing single-cell transcriptome analysis. Genes Cells 2023; 28:800-810. [PMID: 37723830 PMCID: PMC11448005 DOI: 10.1111/gtc.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Preparing viable single cells is critical for conducting single-cell RNA sequencing (scRNA-seq) because the presence of ambient RNA from dead or damaged cells can interfere with data analysis. Here, we developed a method for isolating viable single cells from adult planarian bodies using fluorescence-activated cell sorting (FACS). This method was then applied to both adult pluripotent stem cells (aPSCs) and differentiating/differentiated cells. Initially, we employed a violet instead of ultraviolet (UV) laser to excite Hoechst 33342 to reduce cellular damage. After optimization of cell staining conditions and FACS compensation, we generated FACS profiles similar to those created using a previous method that employed a UV laser. Despite successfully obtaining high-quality RNA sequencing data for aPSCs, non-aPSCs produced low-quality RNA reads (i.e., <60% of cells possessing barcoding mRNAs). Subsequently, we identified an effective FACS gating condition that excluded low-quality cells and tissue debris without staining. This non-staining isolation strategy not only reduced post-dissociation time but also enabled high-quality scRNA-seq results for all cell types (i.e., >80%). Taken together, these findings imply that the non-staining FACS strategy may be beneficial for isolating viable cells not only from planarians but also from other organisms and tissues for scRNA-seq studies.
Collapse
Affiliation(s)
- Yoshihito Kuroki
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
4
|
龚 海, 麻 付, 张 晓. [Advances in methods and applications of single-cell Hi-C data analysis]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1033-1039. [PMID: 37879935 PMCID: PMC10600426 DOI: 10.7507/1001-5515.202303046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Indexed: 10/27/2023]
Abstract
Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.
Collapse
Affiliation(s)
- 海燕 龚
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 付强 麻
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 晓彤 张
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
5
|
Wurmser M, Madani R, Chaverot N, Backer S, Borok M, Dos Santos M, Comai G, Tajbakhsh S, Relaix F, Santolini M, Sambasivan R, Jiang R, Maire P. Overlapping functions of SIX homeoproteins during embryonic myogenesis. PLoS Genet 2023; 19:e1010781. [PMID: 37267426 DOI: 10.1371/journal.pgen.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rouba Madani
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Nathalie Chaverot
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stéphanie Backer
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Matthew Borok
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | | | - Glenda Comai
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Marc Santolini
- Université de Paris Cité, Interaction Data Lab, CRI Paris, INSERM. Paris, France
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
6
|
Ko KD, Jiang K, Dell'Orso S, Sartorelli V. Integrating single-cell transcriptomes, chromatin accessibility, and multiomics analysis of mesoderm-induced embryonic stem cells. STAR Protoc 2023; 4:102307. [PMID: 37192048 DOI: 10.1016/j.xpro.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/07/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Here, we present workflows for integrating independent transcriptomic and chromatin accessibility datasets and analyzing multiomics. First, we describe steps for integrating independent transcriptomic and chromatin accessibility measurements. Next, we detail multimodal analysis of transcriptomes and chromatin accessibility performed in the same sample. We demonstrate their use by analyzing datasets obtained from mouse embryonic stem cells induced to differentiate toward mesoderm-like, myogenic, or neurogenic phenotypes. For complete details on the use and execution of this protocol, please refer to Khateb et al.1.
Collapse
Affiliation(s)
- Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA.
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Khateb M, Feng X, Dell'Orso S, Sartorelli V. Protocols to generate and isolate mouse myogenic progenitors both in vitro and in vivo. STAR Protoc 2023; 4:102001. [PMID: 36607809 PMCID: PMC9850182 DOI: 10.1016/j.xpro.2022.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can be directed to acquire cell-lineage-specific genetic programs and phenotypes by stepwise exposure to defined factors, allowing the development of in vitro models for studying disease and tissue generation. In this protocol, we describe the use of cultured mESCs to generate presomitic-like mesoderm cells undergoing further specification towards myogenic progenitors (MPs). Further, we describe here a procedure to obtain, dissect, and fluorescence-activated cell sorting (FACS)-isolate somitic cells from genetically labeled Pax7+/Cre; Rosa26YFP/+ embryos. For complete details on the use and execution of this protocol, please refer to Khateb et al.1.
Collapse
Affiliation(s)
- Mamduh Khateb
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA.
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA.
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Zhao Y, Ding Y, He L, Zhou Q, Chen X, Li Y, Alfonsi MV, Wu Z, Sun H, Wang H. Multiscale 3D genome reorganization during skeletal muscle stem cell lineage progression and aging. SCIENCE ADVANCES 2023; 9:eabo1360. [PMID: 36800432 PMCID: PMC9937580 DOI: 10.1126/sciadv.abo1360] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/17/2023] [Indexed: 06/13/2023]
Abstract
Little is known about three-dimensional (3D) genome organization in skeletal muscle stem cells [also called satellite cells (SCs)]. Here, we comprehensively map the 3D genome topology reorganization during mouse SC lineage progression. Specifically, rewiring at the compartment level is most pronounced when SCs become activated. Marked loss in topologically associating domain (TAD) border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can form TAD clusters and super-enhancer-containing TAD clusters orchestrate stage-specific gene expression. Furthermore, we uncover that transcription factor PAX7 is pivotal in enhancer-promoter (E-P) loop formation. We also identify cis-regulatory elements that are crucial for local chromatin organization at Pax7 locus and Pax7 expression. Lastly, we unveil that geriatric SC displays a prominent gain in long-range contacts and loss of TAD border insulation. Together, our results uncover that 3D chromatin extensively reorganizes at multiple architectural levels and underpins the transcriptome remodeling during SC lineage development and SC aging.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Zhou
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Maria Vittoria Alfonsi
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Kong S, Li R, Tian Y, Zhang Y, Lu Y, Ou Q, Gao P, Li K, Zhang Y. Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Front Genet 2023; 13:1100016. [PMID: 36685871 PMCID: PMC9846559 DOI: 10.3389/fgene.2022.1100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, with the development of high-throughput single-cell sequencing technology, single-cell omics has been emerged as a powerful tool to understand the molecular basis of cellular mechanisms and refine our knowledge of diverse cell states. They can reveal the heterogeneity at different genetic layers and elucidate their associations by multiple omics analysis, providing a more comprehensive genetic map of biological regulatory networks. In the post-GWAS era, the molecular biological mechanisms influencing human diseases will be further elucidated by single-cell omics. This review mainly summarizes the development and trend of single-cell omics. This involves single-cell omics technologies, single-cell multi-omics technologies, multiple omics data integration methods, applications in various human organs and diseases, classic laboratory cell lines, and animal disease models. The review will reveal some perspectives for elucidating human diseases and constructing animal models.
Collapse
Affiliation(s)
- Siyuan Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rongrong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yunhan Tian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yaqiu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuhui Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiaoer Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peiwen Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|