1
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
2
|
Li Y, Zhao D, Chen D, Sun Q. Targeting protein condensation in cGAS-STING signaling pathway. Bioessays 2024; 46:e2400091. [PMID: 38962845 DOI: 10.1002/bies.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
The cGAS-STING signaling pathway plays a pivotal role in sensing cytosolic DNA and initiating innate immune responses against various threats, with disruptions in this pathway being associated with numerous immune-related disorders. Therefore, precise regulation of the cGAS-STING signaling is crucial to ensure appropriate immune responses. Recent research, including ours, underscores the importance of protein condensation in driving the activation and maintenance of innate immune signaling within the cGAS-STING pathway. Consequently, targeting condensation processes in this pathway presents a promising approach for modulating the cGAS-STING signaling and potentially managing associated disorders. In this review, we provide an overview of recent studies elucidating the role and regulatory mechanism of protein condensation in the cGAS-STING signaling pathway while emphasizing its pathological implications. Additionally, we explore the potential of understanding and manipulating condensation dynamics to develop novel strategies for mitigating cGAS-STING-related disorders in the future.
Collapse
Affiliation(s)
- Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang JN, Dong MM, Cao W, Chen HG, Gu HY, Feng YL, Zhang EF, He JS, Liu SC, Xie AY, Cai Z. Disruption of DNA-PKcs-mediated cGAS retention on damaged chromatin potentiates DNA damage-inducing agent-induced anti-multiple myeloma activity. Br J Cancer 2024; 131:430-443. [PMID: 38877108 PMCID: PMC11300664 DOI: 10.1038/s41416-024-02742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.
Collapse
Affiliation(s)
- Jin-Na Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Meng-Meng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao-Guang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui-Yao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Li Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - En-Fan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si-Cheng Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - An-Yong Xie
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang L, Zhou W. Phase separation as a new form of regulation in innate immunity. Mol Cell 2024; 84:2410-2422. [PMID: 38936362 DOI: 10.1016/j.molcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.
Collapse
Affiliation(s)
- Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Wang H, Zhang Y, Tian Y, Yang W, Wang Y, Hou H, Pan H, Pei S, Zhu H, Gu Z, Zhang Y, Dai D, Chen W, Zheng M, Luo Q, Xiao Y, Huang J. DNA-PK-Mediated Cytoplasmic DNA Sensing Stimulates Glycolysis to Promote Lung Squamous Cell Carcinoma Malignancy and Chemoresistance. Cancer Res 2024; 84:688-702. [PMID: 38199791 DOI: 10.1158/0008-5472.can-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Detection of cytoplasmic DNA is an essential biological mechanism that elicits IFN-dependent and immune-related responses. A better understanding of the mechanisms regulating cytoplasmic DNA sensing in tumor cells could help identify immunotherapeutic strategies to improve cancer treatment. Here we identified abundant cytoplasmic DNA accumulated in lung squamous cell carcinoma (LUSC) cells. DNA-PK, but not cGAS, functioned as a specific cytoplasmic DNA sensor to activate downstream ZAK/AKT/mTOR signaling, thereby enhancing the viability, motility, and chemoresistance of LUSC cells. DNA-PK-mediated cytoplasmic DNA sensing boosted glycolysis in LUSC cells, and blocking glycolysis abolished the tumor-promoting activity of cytoplasmic DNA. Elevated DNA-PK-mediated cytoplasmic DNA sensing was positively correlated with poor prognosis of human patients with LUSC. Targeting signaling activated by cytoplasmic DNA sensing with the ZAK inhibitor iZAK2 alone or in combination with STING agonist or anti-PD-1 antibody suppressed the tumor growth and improved the survival of mouse lung cancer models and human LUSC patient-derived xenografts model. Overall, these findings established DNA-PK-mediated cytoplasmic DNA sensing as a mechanism that supports LUSC malignancy and highlight the potential of targeting this pathway for treating LUSC. SIGNIFICANCE DNA-PK is a cytoplasmic DNA sensor that activates ZAK/AKT/mTOR signaling and boosts glycolysis to enhance malignancy and chemoresistance of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyang Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wanlin Yang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyun Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P.R. China
| | - Wei Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
8
|
Pandey A, Shen C, Feng S, Enosi Tuipulotu D, Ngo C, Liu C, Kurera M, Mathur A, Venkataraman S, Zhang J, Talaulikar D, Song R, Wong JJL, Teoh N, Kaakoush NO, Man SM. Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome. SCIENCE ADVANCES 2024; 10:eadh3409. [PMID: 38277448 PMCID: PMC10816715 DOI: 10.1126/sciadv.adh3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dipti Talaulikar
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Department of Human Genomics, ACT Pathology, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Narci Teoh
- Gastroenterology and Hepatology Unit, The Australian National University Medical School at The Canberra Hospital, The Australian National University, Canberra, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Hristova DB, Oliveira M, Wagner E, Melcher A, Harrington KJ, Belot A, Ferguson BJ. DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. iScience 2024; 27:108760. [PMID: 38269102 PMCID: PMC10805666 DOI: 10.1016/j.isci.2023.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
To mount an efficient interferon response to virus infection, intracellular pattern recognition receptors (PRRs) sense viral nucleic acids and activate anti-viral gene transcription. The mechanisms by which intracellular DNA and DNA viruses are sensed are relevant not only to anti-viral innate immunity, but also to autoinflammation and anti-tumour immunity through the initiation of sterile inflammation by self-DNA recognition. The PRRs that directly sense and respond to viral or damaged self-DNA function by signaling to activate interferon regulatory factor (IRF)-dependent type one interferon (IFN-I) transcription. We and others have previously defined DNA-dependent protein kinase (DNA-PK) as an essential component of the DNA-dependent anti-viral innate immune system. Here, we show that DNA-PK is essential for cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-dependent IFN-I responses in human cells during stimulation with exogenous DNA and infection with DNA viruses.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Emma Wagner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alan Melcher
- The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard, Lyon, France
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
10
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
11
|
Wang X, Lin M, Zhu L, Ye Z. GAS-STING: a classical DNA recognition pathways to tumor therapy. Front Immunol 2023; 14:1200245. [PMID: 37920470 PMCID: PMC10618366 DOI: 10.3389/fimmu.2023.1200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS), recognized as the primary DNA sensor within cells, possesses the capability to identify foreign DNA molecules along with free DNA fragments. This identification process facilitates the production of type I IFNs through the activator of the interferon gene (STING) which induces the phosphorylation of downstream transcription factors. This action characterizes the most archetypal biological functionality of the cGAS-STING pathway. When treated with anti-tumor agents, cells experience DNA damage that triggers activation of the cGAS-STING pathway, culminating in the expression of type I IFNs and associated downstream interferon-stimulated genes. cGAS-STING is one of the important innate immune pathways,the role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.type I IFNs promote the recruitment and activation of inflammatory cells (including NK cells) at the tumor site.Type I IFNs also can promote the activation and maturation of dendritic cel(DC), improve the antigen presentation of CD4+T lymphocytes, and enhance the cross-presentation of CD8+T lymphocytes to upregulating anti-tumor responses. This review discussed the cGAS-STING signaling and its mechanism and biological function in traditional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Xinrui Wang
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meijia Lin
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liping Zhu
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhoujie Ye
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Abstract
Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.
Collapse
Affiliation(s)
- Quanjin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wardlaw CP, Petrini JH. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Bioessays 2023; 45:e2300042. [PMID: 37147792 PMCID: PMC10473822 DOI: 10.1002/bies.202300042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Taffoni C, Schüssler M, Vila IK, Laguette N. Harnessing the cooperation between DNA-PK and cGAS in cancer therapies: The cooperation between DNA-PK and cGAS shapes tumour immunogenicity. Bioessays 2023; 45:e2300045. [PMID: 37147791 DOI: 10.1002/bies.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is central for the initiation of anti-tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS-STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA-dependent protein kinase (DNA-PK) complex, that recently emerged as an activator of inflammatory responses in tumour cells. We propose that stratification analyses on cGAS and DNA-PK expression/activation status should be carried out to predict treatment efficacy. We herein also provide insights into non-canonical functions borne by cGAS and cGAMP, highlighting how they may influence tumourigenesis. All these parameters should be taken into consideration concertedly to choose strategies aiming to effectively boost tumour immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
16
|
Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne) 2023; 10:1165225. [PMID: 37228405 PMCID: PMC10203243 DOI: 10.3389/fmed.2023.1165225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Interferon (IFN) is a key component of the innate immune response. For reasons that remain incompletely understood, the IFN system is upregulated in several rheumatic diseases, particularly those that feature autoantibody production, such as SLE, Sjögren's syndrome, myositis and systemic sclerosis. Interestingly, many of the autoantigens targeted in these diseases are components of the IFN system, representing IFN-stimulated genes (ISGs), pattern recognition receptors (PRRs), and modulators of the IFN response. In this review, we describe features of these IFN-linked proteins that may underlie their status as autoantigens. Note is also made of anti-IFN autoantibodies that have been described in immunodeficiency states.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
17
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
18
|
Taffoni C, Marines J, Chamma H, Guha S, Saccas M, Bouzid A, Valadao AC, Maghe C, Jardine J, Park MK, Polak K, De Martino M, Vanpouille‐Box C, Del Rio M, Gongora C, Gavard J, Bidère N, Song MS, Pineau D, Hugnot J, Kissa K, Fontenille L, Blanchet FP, Vila IK, Laguette N. DNA damage repair kinase DNA-PK and cGAS synergize to induce cancer-related inflammation in glioblastoma. EMBO J 2023; 42:e111961. [PMID: 36574362 PMCID: PMC10068334 DOI: 10.15252/embj.2022111961] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | - Johanna Marines
- IGH, Université de Montpellier, CNRSMontpellierFrance
- Azelead©MontpellierFrance
| | - Hanane Chamma
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | | | - Amel Bouzid
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | - Clément Maghe
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Mi Kyung Park
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell MedicineNew YorkNYUSA
| | | | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Celine Gongora
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO)Saint‐HerblainFrance
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Min Sup Song
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Donovan Pineau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Jean‐Philippe Hugnot
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Karima Kissa
- Université de Montpellier, CNRS UMR 5235MontpellierFrance
| | | | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRSMontpellierFrance
| | | | | |
Collapse
|
19
|
Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP. Immunomodulatory effects of targeted radionuclide therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:105-136. [PMID: 37438015 DOI: 10.1016/bs.ircmb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
It is now clear that conventional radiation therapy can reinstate cell death immunogenicity. Recent preclinical data indicate that targeted radionuclide therapy that irradiate tumors at continuous low dose rate also can elicit immunostimulatory effects and represents a promising strategy to circumvent immune checkpoint inhibitor resistance. In this perspective, we discuss the accumulating preclinical and clinical data suggesting that activation of the immune system through the cGAS-STING axis and the release of extracellular vesicles by irradiated cells, participate to this antitumor immunity. This should need to be considered for adapting clinical practices to state of the art of the radiobiology and to increase targeted radionuclide therapy effectiveness.
Collapse
Affiliation(s)
- J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Y Bouden
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Godry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P-O Kotzki
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - J-P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|