1
|
Xiao K, Yang K, Hirbe AC. A Sequencing Overview of Malignant Peripheral Nerve Sheath Tumors: Findings and Implications for Treatment. Cancers (Basel) 2025; 17:180. [PMID: 39857962 PMCID: PMC11763529 DOI: 10.3390/cancers17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare but aggressive malignancies with a low 5-year survival rate despite current treatments. MPNSTs frequently harbor mutations in key genes such as NF1, CDKN2A, TP53, and PRC2 components (EED or SUZ12) across different disease stages. With the rapid advancement of high-throughput sequencing technologies, the molecular characteristics driving MPNST development are becoming clearer. This review summarizes recent sequencing studies on peripheral nerve sheath tumors, including plexiform neurofibromas (PNs), atypical neurofibromatous neoplasm with uncertain biologic potential (ANNUBP), and MPNSTs, highlighting key mutation events in tumor progression from the perspectives of epigenetics, transcriptomics, genomics, proteomics, and metabolomics. We also discuss the therapeutic implications of these genomic findings, focusing on preclinical and clinical trials targeting these alterations. Finally, we conclude that overcoming tumor resistance through combined targeted therapies and personalized treatments based on the molecular characteristics of MPNSTs will be a key direction for future treatment strategies.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.X.); (K.Y.)
| |
Collapse
|
2
|
Menyailo ME, Kopantseva EE, Khozyainova AA, Korobeynikova AA, Denisov EV. Soft tissue sarcomas at the single-cell and spatial resolution: new markers and targets. Cancer Gene Ther 2025; 32:11-21. [PMID: 39582085 DOI: 10.1038/s41417-024-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Soft tissue sarcomas (STS) are heterogeneous and aggressive tumors, originating in connective tissues embryologically derived from the mesenchyme. Due to their rarity, crucial information about their biology is still lacking. In recent years, single-cell and spatial analyses have opened up new horizons in oncology, leading to the possibility of characterizing the internal architecture of the tumor at the single-cell and spatial levels. This review summarizes the first results acquired through these revolutionary methods for different types of STS. We discuss tumor cell populations and their evolution, interactions between tumor cells and the microenvironment, new prognostic markers, and clinically important targets. Finally, we examine the challenges presented by the single-cell and spatial omics of STS and the future perspectives in this field.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Elena E Kopantseva
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Anastasia A Korobeynikova
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Evgeny V Denisov
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia.
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia.
| |
Collapse
|
3
|
Zhang L, Maalouf A, Makri SC, Banerjee J, Suru A, Tam AJ, Calizo A, Pollard K, Wang J, Danilova L, Ioannou M, Levin AS, Morris CD, Rhee DS, Belzberg AJ, Blakeley JO, Ladle BH, Pardoll DM, Lucas CHG, Rodriguez FJ, Gross JM, Anders RA, Pratilas CA, Llosa NJ. Multidimensional Immunotyping of Human NF1-Associated Peripheral Nerve Sheath Tumors Uncovers Tumor-Associated Macrophages as Key Drivers of Immune Evasion in the Tumor Microenvironment. Clin Cancer Res 2024; 30:5459-5472. [PMID: 39321200 PMCID: PMC11866061 DOI: 10.1158/1078-0432.ccr-24-1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas and the leading cause of mortality in individuals with neurofibromatosis type 1 (NF1). Despite many clinical trials, outcomes for patients with MPNST have remained stagnant, and most succumb to their disease; thus, novel therapeutic approaches are needed. A better understanding of the MPNST immune ecosystem will aid in the development of strategies to activate the immune system against the tumor. In this study, we profile the tumor immune microenvironment (TIME) in NF1-associated peripheral nerve sheath tumors (PNST) to discover insights on the role played by tumor-infiltrating immune cells in malignant transformation. EXPERIMENTAL DESIGN Using fresh and formalin-fixed paraffin-embedded tissue from patients diagnosed with NF1-PNST, we dissected the TIME through IHC, multiparameter flow cytometry, and comparative transcriptomic studies. RESULTS Immunophenotyping confirmed increased immune cell infiltration during malignant progression, with a predominance of infiltrating myeloid cells, particularly CD163+ tumor-associated macrophages (TAM). The T cells within MPNST exhibited signs of tumor activation, characterized by high programmed cell death 1 expression. Additionally, MPNST specimens demonstrated elevated levels of immunosuppressive TAM, with heightened PD-L1 expression. The proportion of CD163+ myeloid cells within the TIME correlated with poorer progression-free survival. Notably, loss of H3K27 trimethylation correlated with low immune cell infiltration in MPNST. CONCLUSIONS Malignant transformation of NF1-PNST is characterized by an immunosuppressive microenvironment comprising TAM with high expression of PD-L1, which is associated with inferior outcomes. These findings suggest the clinical potential of immune-modulating therapeutics that can unleash an antitumor immune response.
Collapse
MESH Headings
- Humans
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/pathology
- Neurofibromatosis 1/immunology
- Neurofibromatosis 1/pathology
- Neurofibromatosis 1/genetics
- Neurofibromatosis 1/complications
- Immunophenotyping
- Nerve Sheath Neoplasms/pathology
- Nerve Sheath Neoplasms/immunology
- Nerve Sheath Neoplasms/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Tumor Escape
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Neurofibrosarcoma/pathology
- Neurofibrosarcoma/genetics
- Neurofibrosarcoma/immunology
- Female
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Male
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- CD163 Antigen
Collapse
Affiliation(s)
- Lindy Zhang
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Alexandre Maalouf
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Stavriani C. Makri
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Aditya Suru
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Ada J. Tam
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Ana Calizo
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kai Pollard
- Laboratory Corporation of America (Labcorp), Burlington, NC
| | - Jiawan Wang
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Maria Ioannou
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam S. Levin
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carol D. Morris
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel S. Rhee
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan J. Belzberg
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jaishri O. Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brian H. Ladle
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Drew M. Pardoll
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | - Fausto J. Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, CA
| | - John M. Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert A. Anders
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine A. Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicolas J. Llosa
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| |
Collapse
|
4
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
史 伯, 郑 皓, 吴 华, 胡 湘, 严 望. [Analysis of clinical features, treatment methods, and prognostic influence factors in patients with malignant peripheral nerve sheath tumor]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1193-1201. [PMID: 39433492 PMCID: PMC11522533 DOI: 10.7507/1002-1892.202406040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Objective To investigate the clinical features, treatment methods, and prognostic influence factors of patients with malignant peripheral nerve sheath tumor (MPNST). Methods A retrospective analysis was conducted on 96 MPNST patients treated between January 1, 2015 and December 31, 2021. There were 46 males and 50 females, aged between 15 and 87 years (mean, 48.2 years). The tumors were located in the trunk in 50 cases, extremities in 39 cases, and head and neck in 7 cases. The maximum tumor diameter was <5 cm in 49 cases, ≥5 cm in 32 cases, with 15 cases missing data. Tumor depth was deep in 77 cases and superficial in 19 cases. The Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) histological grading was G1 in 9 cases, G2 in 12 cases, and G3 in 34 cases, with 41 cases missing data. There were 37 recurrent MPNST cases, 32 cases with neurofibromatosis type 1 (NF1), and 26 cases in stage Ⅳ. Postoperative adjuvant radiotherapy was administered to 25 patients, perioperative chemotherapy to 45 patients, and anlotinib-targeted therapy to 30 patients. R 0 resection was achieved in 73 cases. Patients were divided into groups based on the presence or absence of NF1, and baseline data between the two groups were compared. Kaplan-Meier curves were generated to assess disease-free survival (DFS) and overall survival (OS) based on various factors (age, gender, presence of NF1, recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R 0 resection, tumor location, tumor size, tumor depth, perioperative chemotherapy, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy), and differences between survival curves were analyzed using the Log-Rank test. Multivariate COX proportional hazards regression was used to identify independent prognostic factors for MPNST. Results Patients with NF1 had a significantly higher proportion of superficial tumors and lower FNCLCC grade compared to those without NF1 ( P<0.05); no significant difference was found for other variables ( P<0.05). Kaplan-Meier analysis showed that recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R 0 resection, perioperative chemotherapy, and anlotinib-targeted therapy were factors influencing 1-year DFS ( P<0.05), while stage Ⅳ MPNST, FNCLCC grade, and perioperative chemotherapy were factors affecting 3-year OS ( P<0.05). Multivariate COX proportional hazards regression analysis revealed that recurrent MPNST and high-grade FNCLCC (G3) were independent prognostic factors for 1-year DFS ( P<0.05), while stage Ⅳ MPNST, superficial tumor depth, age over 60 years, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy were independent prognostic factors for 3-year OS ( P<0.05). Conclusion MPNST patients with NF1 tend to have more superficial tumors and lower FNCLCC grades. FNCLCC grade, R 0 resection, and adjuvant therapies, including radiotherapy and anlotinib-targeted therapy, are closely associated with MPNST prognosis. Complete surgical resection should be prioritized in clinical management, along with adjuvant treatments such as radiotherapy and targeted therapy of anlotinib to improve patient outcomes.
Collapse
Affiliation(s)
- 伯翀 史
- 复旦大学附属肿瘤医院骨与软组织外科(上海 200032)Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- 复旦大学上海医学院肿瘤学系(上海 200032)Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - 皓予 郑
- 复旦大学附属肿瘤医院骨与软组织外科(上海 200032)Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- 复旦大学上海医学院肿瘤学系(上海 200032)Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - 华健 吴
- 复旦大学附属肿瘤医院骨与软组织外科(上海 200032)Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - 湘麟 胡
- 复旦大学附属肿瘤医院骨与软组织外科(上海 200032)Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- 复旦大学上海医学院肿瘤学系(上海 200032)Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - 望军 严
- 复旦大学附属肿瘤医院骨与软组织外科(上海 200032)Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- 复旦大学上海医学院肿瘤学系(上海 200032)Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Sundby RT, Szymanski JJ, Pan AC, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JS, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early Detection of Malignant and Premalignant Peripheral Nerve Tumors Using Cell-Free DNA Fragmentomics. Clin Cancer Res 2024; 30:4363-4376. [PMID: 39093127 PMCID: PMC11443212 DOI: 10.1158/1078-0432.ccr-24-0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Early detection of neurofibromatosis type 1 (NF1)-associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, enabling early definitive treatment and potentially averting deadly outcomes. In this study, we describe a cell-free DNA (cfDNA) fragmentomic approach that distinguishes nonmalignant, premalignant, and malignant forms of PNST in the cancer predisposition syndrome, NF1. EXPERIMENTAL DESIGN cfDNA was isolated from plasma samples of a novel cohort of 101 patients with NF1 and 21 healthy controls and underwent whole-genome sequencing. We investigated diagnosis-specific signatures of copy-number alterations with in silico size selection as well as fragment profiles. Fragmentomics were analyzed using complementary feature types: bin-wise fragment size ratios, end motifs, and fragment non-negative matrix factorization signatures. RESULTS The novel cohort of patients with NF1 validated that our previous cfDNA copy-number alteration-based approach identifies malignant PNST (MPNST) but cannot distinguish between benign and premalignant states. Fragmentomic methods were able to differentiate premalignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. CONCLUSIONS Novel cfDNA fragmentomic signatures distinguish AN from benign plexiform neurofibromas and MPNST, enabling more precise clinical diagnosis and management. This study pioneers the early detection of malignant and premalignant PNST in NF1 and provides a blueprint for decentralizing noninvasive cancer surveillance in hereditary cancer predisposition syndromes.
Collapse
Affiliation(s)
- R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Jeffrey J. Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Alexander C. Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Paul A. Jones
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sana Z. Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Olivia H. Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
| | - Amy E. Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Faridi Qaium
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Andrea N. Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Christian F. Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Natalie B. Collins
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts.
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, District of Columbia.
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.
| | - Carina A. Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana.
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Angela C. Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Hirbe AC, Dehner CA, Dombi E, Eulo V, Gross AM, Sundby T, Lazar AJ, Widemann BC. Contemporary Approach to Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432242. [PMID: 38710002 PMCID: PMC11656191 DOI: 10.1200/edbk_432242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Most malignant peripheral nerve sheath tumors (MPNSTs) are clinically aggressive high-grade sarcomas, arising in individuals with neurofibromatosis type 1 (NF1) at a significantly elevated estimated lifetime frequency of 8%-13%. In the setting of NF1, MPNSTs arise from malignant transformation of benign plexiform neurofibroma and borderline atypical neurofibromas. Composed of neoplastic cells from the Schwannian lineage, these cancers recur in approximately 50% of individuals, and most patients die within five years of diagnosis, despite surgical resection, radiation, and chemotherapy. Treatment for metastatic disease is limited to cytotoxic chemotherapy and investigational clinical trials. In this article, we review the pathophysiology of this aggressive cancer and current approaches to surveillance and treatment.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- Division of Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Brockman QR, Rytlewski JD, Milhem M, Monga V, Dodd RD. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis Oncol 2024; 8:e2300325. [PMID: 38820476 PMCID: PMC11552688 DOI: 10.1200/po.23.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION These results might have broad implications for the clinical management and surveillance of sarcoma.
Collapse
Affiliation(s)
- Qierra R. Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Jeffrey D. Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Taylor Sundby R, Szymanski JJ, Pan A, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JSA, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early detection of malignant and pre-malignant peripheral nerve tumors using cell-free DNA fragmentomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301053. [PMID: 38293154 PMCID: PMC10827240 DOI: 10.1101/2024.01.18.24301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. We therefore investigated the ability of fragment-based cfDNA features to differentiate NF1-associated tumors including binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix factorization deconvolution of fragment lengths. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. Overall, this study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey J Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Jones
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sana Z Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivia H Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy E Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Faridi Qaium
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea N Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian F Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela C Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Zhang X, Hu C, Li D, Liu S. Establishment and characterization of a recurrent malignant peripheral nerve sheath tumor cell line: RsNF. Hum Cell 2024; 37:345-355. [PMID: 37938540 DOI: 10.1007/s13577-023-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive and recurrent soft tissue sarcoma. It most commonly occurs secondary to neurofibromatosis type I, and it has a 5-year survival rate of only 8-13%. To better study the tumor heterogeneity of MPNST and to develop diverse treatment options, more tumor-derived cell lines are needed to obtain richer biological information. Here, we established a primary cell line of relapsed MPNST RsNF cells derived from a patient diagnosed with NF1 and detected the presence of NF1 mutations and SUZ12 somatic mutations through whole-exome sequencing(WES). Through tumor molecular marker targeted sequencing and single-cell transcriptome sequencing, it was found that chromosome 7 copy number variation (CNV) was gained in this cell line, and ZNF804B, EGFR, etc., were overexpressed on chromosome 7. Therefore, RsNF cells can be used as a useful tool in NF1-associated MPNST genomic amplification studies and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Xingnan Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chenhao Hu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dezhi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- U1195, Inserm et Universite Paris-Saclay, 94276, Le Kremlin-Bicetre, France.
| |
Collapse
|
11
|
Wang WN, Koguchi-Yoshioka H, Nimura K, Watanabe R, Tanemura A, Fujimoto M, Wataya-Kaneda M. Distinct Transcriptional Profiles in the Different Phenotypes of Neurofibroma from the Same Subject with Neurofibromatosis 1. J Invest Dermatol 2024; 144:133-141.e4. [PMID: 37301319 DOI: 10.1016/j.jid.2023.03.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023]
Abstract
Neurofibromatosis 1 is a prevalent hereditary neurocutaneous disorder. Among the clinical phenotypes of neurofibromatosis 1, cutaneous neurofibroma (cNF) and plexiform neurofibroma (pNF) have distinct clinical manifestations, and pNF should be closely monitored owing to its malignant potential. However, the detailed distinct features of neurofibromatosis 1 phenotypes remain unknown. To determine whether the transcriptional features and microenvironment of cNF and pNF differ, single-cell RNA sequencing was performed on isolated cNF and pNF cells from the same patient. Six cNF and five pNF specimens from different subjects were also immunohistochemically analyzed. Our findings revealed that cNF and pNF had distinct transcriptional profiles even within the same subject. pNF is enriched in Schwann cells with characteristics similar to those of their malignant counterpart, fibroblasts, with a cancer-associated fibroblast-like phenotype, angiogenic endothelial cells, and M2-like macrophages, whereas cNF is enriched in CD8 T cells with tissue residency markers. The results of immunohistochemical analyses performed on different subjects agreed with those of single-cell RNA sequencing. This study found that cNF and pNF, the different neurofibromatosis phenotypes in neurofibromatosis 1, from the same subject are transcriptionally distinct in terms of the cell types involved, including T cells.
Collapse
Affiliation(s)
- Wei-Ning Wang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
12
|
Bhunia MM, Stehn CM, Jubenville TA, Novacek EL, Larsson AT, Madala M, Suppiah S, Velez-Reyes GL, Williams KB, Sokolowski M, Williams RL, Finnerty SJ, Temiz NA, Caride A, Bhagwate AV, Nagaraj NK, Lee JH, Ordog T, Zadeh G, Largaespada DA. Multiomic analyses reveal new targets of polycomb repressor complex 2 in Schwann lineage cells and malignant peripheral nerve sheath tumors. Neurooncol Adv 2024; 6:vdae188. [PMID: 39620202 PMCID: PMC11606644 DOI: 10.1093/noajnl/vdae188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) can arise from atypical neurofibromas (ANF). Loss of the polycomb repressor complex 2 (PRC2) is a common event. Previous studies on PRC2-regulated genes in MPNST used genetic add-back experiments in highly aneuploid MPNST cell lines which may miss PRC2-regulated genes in NF1-mutant ANF-like precursor cells. A set of PRC2-regulated genes in human Schwann cells (SCs) has not been defined. We hypothesized that PRC2 loss has direct and indirect effects on gene expression resulting in MPNST, so we sought to identify PRC2-regulated genes in immortalized human Schwann cells (iHSCs). Methods We engineered NF1-deficient iHSCs with loss of function SUZ12 or EED mutations. RNA sequencing revealed 1327 differentially expressed genes to define PRC2-regulated genes. To investigate MPNST pathogenesis, we compared genes in iHSCs to consistent gene expression differences between ANF and MPNSTs. Chromatin immunoprecipitation sequencing was used to further define targets. Methylome and proteomic analyses were performed to further identify enriched pathways. Results We identified potential PRC2-regulated drivers of MPNST progression. Pathway analysis indicates many upregulated cancer-related pathways. We found transcriptional evidence for activated Notch and Sonic Hedgehog (SHH) signaling in PRC2-deficient iHSCs. Functional studies confirm that Notch signaling is active in MPNST cell lines, patient-derived xenografts, and transient cell models of PRC2 deficiency. A combination of MEK and γ-secretase inhibition shows synergy in MPNST cell lines. Conclusions We identified PRC2-regulated genes and potential drivers of MPNSTs. Our findings support the Notch pathway as a druggable target in MPNSTs. Our identification of PRC2-regulated genes and pathways could result in more novel therapeutic approaches.
Collapse
Affiliation(s)
- Minu M Bhunia
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher M Stehn
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ethan L Novacek
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahathi Madala
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suganth Suppiah
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Germán L Velez-Reyes
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Sokolowski
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel J Finnerty
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nuri A Temiz
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ariel Caride
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aditya V Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nagaswaroop K Nagaraj
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeong-Heon Lee
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Zhang X, Gopalan V, Syed N, Hannenhalli S, Shern JF. Protocol for using single-cell sequencing to study the heterogeneity of NF1 nerve sheath tumors from clinical biospecimens. STAR Protoc 2023; 4:102297. [PMID: 37167059 DOI: 10.1016/j.xpro.2023.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Single-cell sequencing is a powerful technology to understand the heterogeneity of clinical biospecimens. Here, we present a protocol for obtaining single-cell suspension from neurofibromatosis type 1-associated nerve sheath tumors for transcriptomic profiling on the 10x platform. We describe steps for clinical sample collection, generation of single-cell suspension, and cell capture and sequencing. We then detail methods for integrative analysis, developmental Schwann cell trajectory building using bioinformatic tools, and comparative analysis. This protocol can be adapted for single-cell sequencing using mouse nerve tumors. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neeraja Syed
- Pediatric Oncology Branch Childhood Cancer Data Initiative, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|