1
|
Mori Y, Smith S, Wang J, Eliora N, Heikes KL, Munjal A. Versican controlled by Lmx1b regulates hyaluronate density and hydration for semicircular canal morphogenesis. Development 2025; 152:dev203003. [PMID: 39651757 PMCID: PMC11829767 DOI: 10.1242/dev.203003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
During inner ear semicircular canal morphogenesis in zebrafish, patterned canal-genesis zones express genes for extracellular matrix component synthesis. These include hyaluronan and the hyaluronan-binding chondroitin sulfate proteoglycan Versican, which are abundant in the matrices of many developing organs. Charged hyaluronate polymers play a key role in canal morphogenesis through osmotic swelling. However, the developmental factor(s) that pattern the synthesis of the matrix components and regulation of hyaluronate density and swelling are unknown. Here, we identify the transcription factor Lmx1b as a positive transcriptional regulator of hyaluronan, Versican, and chondroitin synthesis genes crucial for canal morphogenesis. We show that Versican regulates hyaluronan density through its protein core, whereas the charged chondroitin side chains contribute to the hydration of hyaluronate-containing extracellular matrices. Versican-tuned properties of hyaluronate matrices may be a broadly used mechanism in morphogenesis with important implications for understanding diseases in which these matrices are impaired, and for hydrogel engineering for tissue regeneration.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sierra Smith
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiacheng Wang
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nadia Eliora
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kira L. Heikes
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Jou V, Peña SM, Lehoczky JA. Regeneration-specific promoter switching facilitates Mest expression in the mouse digit tip to modulate neutrophil response. NPJ Regen Med 2024; 9:32. [PMID: 39468052 PMCID: PMC11519450 DOI: 10.1038/s41536-024-00376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia M Peña
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Castilla‐Ibeas A, Zdral S, Oberg KC, Ros MA. The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration. Dev Dyn 2024; 253:798-814. [PMID: 38288855 PMCID: PMC11656695 DOI: 10.1002/dvdy.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 12/20/2024] Open
Abstract
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
Collapse
Affiliation(s)
- Alejandro Castilla‐Ibeas
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Sofía Zdral
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Kerby C. Oberg
- Department of Pathology and Human AnatomyLoma Linda University, School of MedicineLoma LindaCaliforniaUSA
| | - Marian A. Ros
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| |
Collapse
|
4
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Loubet-Senear K, Srivastava M. Regeneration recapitulates many embryonic processes, including reuse of developmental regulatory regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601589. [PMID: 39005439 PMCID: PMC11245107 DOI: 10.1101/2024.07.04.601589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The wide distribution of regenerative capacity across the animal tree of life raises the question of how regeneration has evolved in distantly-related animals. Given that whole-body regeneration shares the same end-point - formation of a functional body plan - as embryonic development, it has been proposed that regeneration likely recapitulates developmental processes to some extent. Therefore, understanding how developmental processes are reactivated during regeneration is important for uncovering the evolutionary history of regeneration. Comparative transcriptomic studies in some species have revealed shared gene expression between development and regeneration, but it is not known whether these shared expression profiles correspond to shared functions, and which mechanisms activate expression of developmental genes during regeneration. We sought to address these questions using the acoel Hofstenia miamia , which is amenable to studies of both embryonic development and whole-body regeneration. By examining functionally validated regeneration processes during development at single-cell resolution, we found that whereas patterning and cellular differentiation are largely similar, wound response programs have distinct dynamics between development and regeneration. Chromatin accessibility analyses revealed that regardless of playing concordant or divergent roles during regeneration and development, genes expressed in both processes are frequently controlled by the same regulatory regions, potentially via utilization of distinct transcription factor binding sites. This study extends the known correspondence of development and regeneration from broad transcriptomic similarity to include patterning and differentiation processes. Further, our work provides a catalog of regulatory regions and binding sites that potentially regulate developmental genes during regeneration, fueling comparative studies of regeneration.
Collapse
|
7
|
Jou V, Peña SM, Lehoczky JA. Regeneration-specific promoter switching facilitates Mest expression in the mouse digit tip to modulate neutrophil response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598713. [PMID: 38915675 PMCID: PMC11195169 DOI: 10.1101/2024.06.12.598713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sophia M. Peña
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Inomata Y, Kawatani N, Yamashita H, Hattori F. Lgr6-expressing functional nail stem-like cells differentiated from human-induced pluripotent stem cells. PLoS One 2024; 19:e0303260. [PMID: 38743670 PMCID: PMC11093308 DOI: 10.1371/journal.pone.0303260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The nail matrix containing stem cell populations produces nails and may contribute to fingertip regeneration. Nails are important tissues that maintain the functions of the hand and foot for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many cases, loses them, although not permanently. In this report, we have achieved the successful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells (iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes involved in limb development. Comprehensive mRNA sequencing analysis revealed that the digit organoid global gene expression profile fits human finger development. The NS-like cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing functional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also produced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our differentiation method and reporter construct enable the discovery of drugs for nail repair and possibly fingertip-regenerative therapy.
Collapse
Affiliation(s)
- Yukino Inomata
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Nano Kawatani
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Hiromi Yamashita
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Fumiyuki Hattori
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
9
|
Mori Y, Smith S, Wang J, Munjal A. Versican controlled by Lmx1b regulates hyaluronate density and hydration for semicircular canal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592968. [PMID: 38766227 PMCID: PMC11100707 DOI: 10.1101/2024.05.07.592968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
During inner ear semicircular canal morphogenesis in zebrafish, patterned canal-genesis zones express genes for extracellular matrix component synthesis. These include hyaluronan and the hyaluronan-binding chondroitin sulfate proteoglycan Versican, which are abundant in the matrices of many developing organs. Charged hyaluronate polymers play a key role in canal morphogenesis through osmotic swelling. However, the developmental factor(s) that control the synthesis of the matrix components and regulation of hyaluronate density and swelling are unknown. Here, we identify the transcription factor, Lmx1b, as a positive transcriptional regulator of hyaluronan, Versican, and chondroitin synthesis genes crucial for canal morphogenesis. We show that Versican regulates hyaluronan density through its protein core, whereas the charged chondroitin side chains contribute to the osmotic swelling of hyaluronate. Versican-tuned properties of hyaluronate matrices may be a broadly used mechanism in morphogenesis with important implications for understanding diseases where these matrices are impaired, and for hydrogel engineering for tissue regeneration.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - Sierra Smith
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - Jiacheng Wang
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| |
Collapse
|
10
|
Ando K, Ou J, Thompson JD, Welsby J, Bangru S, Shen J, Wei X, Diao Y, Poss KD. A screen for regeneration-associated silencer regulatory elements in zebrafish. Dev Cell 2024; 59:676-691.e5. [PMID: 38290519 PMCID: PMC10939760 DOI: 10.1016/j.devcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianhong Ou
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John D Thompson
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Welsby
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sushant Bangru
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingwen Shen
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaolin Wei
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yarui Diao
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Floriddia E. In conversation with Freda Miller. Nat Neurosci 2023; 26:1653-1656. [PMID: 37709994 DOI: 10.1038/s41593-023-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
|
12
|
Jou V, Lehoczky JA. Toeing the line between regeneration and fibrosis. Front Cell Dev Biol 2023; 11:1217185. [PMID: 37325560 PMCID: PMC10267333 DOI: 10.3389/fcell.2023.1217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Amiel AR, Tsai SL, Wehner D. Embracing the diversity of model systems to deconstruct the basis of regeneration and tissue repair. Development 2023; 150:286821. [PMID: 36718794 DOI: 10.1242/dev.201579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The eighth EMBO conference in the series 'The Molecular and Cellular Basis of Regeneration and Tissue Repair' took place in Barcelona (Spain) in September 2022. A total of 173 researchers from across the globe shared their latest advances in deciphering the molecular and cellular basis of wound healing, tissue repair and regeneration, as well as their implications for future clinical applications. The conference showcased an ever-expanding diversity of model organisms used to identify mechanisms that promote regeneration. Over 25 species were discussed, ranging from invertebrates to humans. Here, we provide an overview of the exciting topics presented at the conference, highlighting novel discoveries in regeneration and perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), 06107 Nice, France
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen 91058, Germany
| |
Collapse
|
14
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
15
|
Hu JK. Nail mesenchyme: Tipping the hand on regeneration. Cell Rep 2023; 42:111960. [PMID: 36640311 DOI: 10.1016/j.celrep.2022.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Digit tip regeneration rebuilds amputated structures in some mammals if the nail organ is preserved. In recently published Cell Reports papers, Castilla-Ibeas et al., Johnson et al., and Mahmud et al. define the patterning function and regenerative capacity of the dorsal nail mesenchyme in this process.
Collapse
Affiliation(s)
- Jimmy K Hu
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|